Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008491057> ?p ?o ?g. }
- W2008491057 endingPage "22" @default.
- W2008491057 startingPage "1" @default.
- W2008491057 abstract "Argon diffusivities and solubilities in single, gem-quality crystals of forsterite, enstatite, quartz and corundum were determined from experiments conducted between 0.5 and ~ 6000 bars Ar pressure and temperatures from 425 °C to 1200 °C. Polished single-crystal slabs and specimens with natural facets were placed in open containers and exposed to an argon atmosphere either in a pressure vessel or in a gas-flow tube furnace at near-atmospheric pressure. Argon atoms from the pressure medium diffused into the crystals to produce near-surface concentration gradients, which were directly profiled using Rutherford backscattering spectrometry. The following Arrhenius relations were obtained for Ar diffusion:Forsterite:DAr=7.2×10-20exp(-42kJmol-1/RT)m2s-1 Enstatite:DAr=1.3×10-20exp(-32kJmol-1/RT)m2s-1 Quartz:DAr=3.1×10-19exp(-43kJmol-1/RT)m2s-1 Corundum:DAr=1.2×10-20exp(-33kJmol-1/RT)m2s-1 The reported activation energies probably represent apparent activation energies that are a combination of the effects of lattice diffusion of Ar atoms with trapping in point-defect vacancies. There are no discernible differences in Ar diffusion in different crystallographic directions, and diffusivities do not vary as a function of the intrinsic oxygen fugacity of the experimental vessels. In addition to diffusivities, the uptake gradients also yielded lattice solubilities of argon, as represented by the concentrations at the mineral surfaces. There are small differences between the solubilities of forsterite, quartz and corundum, but all solubilities are high at ~ 2000 ppm (by mass). The Ar solubilities for the iron-bearing minerals enstatite and San Carlos olivine are much higher than for the other minerals. The mean value for enstatite is 30–60% higher than the iron-free minerals, owing, perhaps, to incorporation of Ar in point defects that are more abundant in enstatite due to oxidation of minor FeO. Argon solubilities are independent of Ar pressure at PAr > ~ 1 bar, but slightly lower at PAr ≈ 0.5–1 bar. This behavior suggests that all sites capable of accommodating Ar atoms are filled at Ar pressures of ~ 1 bar. In all cases, Ar appears to be compatible in the minerals investigated, although the degree of compatibility will depend upon assumptions concerning the minimum Ar fugacity required to fully populate the available vacancies. A series of validation experiments and surface-sensitive analyses were conducted to confirm that the near-surface regions of crystals used in the experiments were crystalline, unreacted and free of structural damage that could potentially influence diffusion and solubility results." @default.
- W2008491057 created "2016-06-24" @default.
- W2008491057 creator A5003607022 @default.
- W2008491057 creator A5009443774 @default.
- W2008491057 creator A5073438865 @default.
- W2008491057 date "2008-07-01" @default.
- W2008491057 modified "2023-10-18" @default.
- W2008491057 title "Lattice diffusion and solubility of argon in forsterite, enstatite, quartz and corundum" @default.
- W2008491057 cites W1964113153 @default.
- W2008491057 cites W1970963438 @default.
- W2008491057 cites W1973239449 @default.
- W2008491057 cites W1975241458 @default.
- W2008491057 cites W1977633453 @default.
- W2008491057 cites W1977893035 @default.
- W2008491057 cites W1981116662 @default.
- W2008491057 cites W1981785026 @default.
- W2008491057 cites W1983360050 @default.
- W2008491057 cites W1984452873 @default.
- W2008491057 cites W1987627897 @default.
- W2008491057 cites W1991419606 @default.
- W2008491057 cites W1991976121 @default.
- W2008491057 cites W1994393193 @default.
- W2008491057 cites W1995035427 @default.
- W2008491057 cites W1996763273 @default.
- W2008491057 cites W2005087041 @default.
- W2008491057 cites W2006580726 @default.
- W2008491057 cites W2007338984 @default.
- W2008491057 cites W2014298488 @default.
- W2008491057 cites W2019167857 @default.
- W2008491057 cites W2032803594 @default.
- W2008491057 cites W2032960086 @default.
- W2008491057 cites W2035328672 @default.
- W2008491057 cites W2036918177 @default.
- W2008491057 cites W2037619442 @default.
- W2008491057 cites W2039567873 @default.
- W2008491057 cites W2045038055 @default.
- W2008491057 cites W2045280613 @default.
- W2008491057 cites W2046227584 @default.
- W2008491057 cites W2046508826 @default.
- W2008491057 cites W2046816113 @default.
- W2008491057 cites W2049639926 @default.
- W2008491057 cites W2049829679 @default.
- W2008491057 cites W2053381713 @default.
- W2008491057 cites W2062236375 @default.
- W2008491057 cites W2064002302 @default.
- W2008491057 cites W2064201988 @default.
- W2008491057 cites W2065569625 @default.
- W2008491057 cites W2066890973 @default.
- W2008491057 cites W2067274448 @default.
- W2008491057 cites W2074279363 @default.
- W2008491057 cites W2074535316 @default.
- W2008491057 cites W2083754373 @default.
- W2008491057 cites W2084209078 @default.
- W2008491057 cites W2086524472 @default.
- W2008491057 cites W2088911284 @default.
- W2008491057 cites W2090199369 @default.
- W2008491057 cites W2092604558 @default.
- W2008491057 cites W2093727384 @default.
- W2008491057 cites W2098391368 @default.
- W2008491057 cites W2109856901 @default.
- W2008491057 cites W2121487292 @default.
- W2008491057 cites W2140212697 @default.
- W2008491057 cites W2141815319 @default.
- W2008491057 cites W2149034123 @default.
- W2008491057 cites W2151405491 @default.
- W2008491057 cites W2155210944 @default.
- W2008491057 cites W2164269590 @default.
- W2008491057 cites W2166833293 @default.
- W2008491057 cites W4250970938 @default.
- W2008491057 doi "https://doi.org/10.1016/j.chemgeo.2008.03.007" @default.
- W2008491057 hasPublicationYear "2008" @default.
- W2008491057 type Work @default.
- W2008491057 sameAs 2008491057 @default.
- W2008491057 citedByCount "36" @default.
- W2008491057 countsByYear W20084910572012 @default.
- W2008491057 countsByYear W20084910572013 @default.
- W2008491057 countsByYear W20084910572014 @default.
- W2008491057 countsByYear W20084910572015 @default.
- W2008491057 countsByYear W20084910572016 @default.
- W2008491057 countsByYear W20084910572017 @default.
- W2008491057 countsByYear W20084910572018 @default.
- W2008491057 countsByYear W20084910572019 @default.
- W2008491057 countsByYear W20084910572020 @default.
- W2008491057 countsByYear W20084910572021 @default.
- W2008491057 crossrefType "journal-article" @default.
- W2008491057 hasAuthorship W2008491057A5003607022 @default.
- W2008491057 hasAuthorship W2008491057A5009443774 @default.
- W2008491057 hasAuthorship W2008491057A5073438865 @default.
- W2008491057 hasConcept C113196181 @default.
- W2008491057 hasConcept C116862484 @default.
- W2008491057 hasConcept C121332964 @default.
- W2008491057 hasConcept C127313418 @default.
- W2008491057 hasConcept C1276947 @default.
- W2008491057 hasConcept C130635790 @default.
- W2008491057 hasConcept C147789679 @default.
- W2008491057 hasConcept C155574463 @default.
- W2008491057 hasConcept C178790620 @default.
- W2008491057 hasConcept C185592680 @default.