Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008693787> ?p ?o ?g. }
- W2008693787 endingPage "27860" @default.
- W2008693787 startingPage "27835" @default.
- W2008693787 abstract "A computationally efficient method for analyzing meteorological and oceanographic historical data sets has been developed. The method combines data reduction and least squares optimal estimation. The data reduction involves computing empirical orthogonal functions (EOFs) of the data based on their recent, high‐quality portion and using a leading EOF subset as a basis for the analyzed solution and for fitting a first‐order linear model of time transitions. We then formulate optimal estimation problems in terms of the EOF projection of the analyzed field to obtain reduced space analogues of the optimal smoother, the Kalman filter, and optimal interpolation techniques. All reduced space algorithms are far cheaper computationally than their full grid prototypes, while their solutions are not necessarily inferior since the sparsity and error in available data often make estimation of small‐scale features meaningless. Where covariance patterns can be estimated from the available data, the analysis methods fill gaps, correct sampling errors, and produce spatially and temporally coherent analyzed data sets. As with classical least squares estimation, the reduced space versions also provide theoretical error estimates for analyzed values. The methods are demonstrated on Atlantic monthly sea surface temperature (SST) anomalies for 1856–1991 from the United Kingdom Meteorological Office historical sea surface temperature data set (version MOHSST5). Choice of a reduced space dimension of 30 is shown to be adequate. The analyses are tested by withholding a significant part of the data and prove to be robust and in agreement with their own error estimates; they are also consistent with a partially independent optimal interpolation (OI) analysis by Reynolds and Smith [1994] produced in the National Centers for Environmental Prediction (NCEP)(known as the NCEP OI analysis). A simple statistical model is used to depict the month‐to‐month SST evolution in the optimal smoother algorithm. Results are somewhat superior to both the Kalman filter, which relies less on the model, and the optimal interpolation, which does not use it at all. The method generalizes a few recent works on using a reduced space for data set analyses. Difficulties of methods which simply fit EOF patterns to observed data are pointed out, and the more complete analysis procedures developed here are suggested as a remedy." @default.
- W2008693787 created "2016-06-24" @default.
- W2008693787 creator A5000307534 @default.
- W2008693787 creator A5007424651 @default.
- W2008693787 creator A5041738664 @default.
- W2008693787 creator A5065775518 @default.
- W2008693787 date "1997-12-15" @default.
- W2008693787 modified "2023-10-18" @default.
- W2008693787 title "Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures" @default.
- W2008693787 cites W1601878664 @default.
- W2008693787 cites W1968857291 @default.
- W2008693787 cites W1980826215 @default.
- W2008693787 cites W1984614940 @default.
- W2008693787 cites W1992225374 @default.
- W2008693787 cites W1992799084 @default.
- W2008693787 cites W1993512681 @default.
- W2008693787 cites W2003437983 @default.
- W2008693787 cites W2003653566 @default.
- W2008693787 cites W2003870625 @default.
- W2008693787 cites W2019688911 @default.
- W2008693787 cites W2024633087 @default.
- W2008693787 cites W2038424763 @default.
- W2008693787 cites W2055106264 @default.
- W2008693787 cites W2055871082 @default.
- W2008693787 cites W2061510589 @default.
- W2008693787 cites W2062914653 @default.
- W2008693787 cites W2073064546 @default.
- W2008693787 cites W2073142925 @default.
- W2008693787 cites W2075059591 @default.
- W2008693787 cites W2092257334 @default.
- W2008693787 cites W2094227853 @default.
- W2008693787 cites W2103854834 @default.
- W2008693787 cites W2105934661 @default.
- W2008693787 cites W2106707682 @default.
- W2008693787 cites W2111395244 @default.
- W2008693787 cites W2159280435 @default.
- W2008693787 cites W2162705391 @default.
- W2008693787 cites W2170081783 @default.
- W2008693787 cites W2173969429 @default.
- W2008693787 cites W2175808424 @default.
- W2008693787 cites W2176233088 @default.
- W2008693787 cites W2403035479 @default.
- W2008693787 cites W2510000870 @default.
- W2008693787 cites W29763158 @default.
- W2008693787 cites W4254510800 @default.
- W2008693787 cites W80152160 @default.
- W2008693787 doi "https://doi.org/10.1029/97jc01734" @default.
- W2008693787 hasPublicationYear "1997" @default.
- W2008693787 type Work @default.
- W2008693787 sameAs 2008693787 @default.
- W2008693787 citedByCount "236" @default.
- W2008693787 countsByYear W20086937872012 @default.
- W2008693787 countsByYear W20086937872013 @default.
- W2008693787 countsByYear W20086937872014 @default.
- W2008693787 countsByYear W20086937872015 @default.
- W2008693787 countsByYear W20086937872016 @default.
- W2008693787 countsByYear W20086937872017 @default.
- W2008693787 countsByYear W20086937872018 @default.
- W2008693787 countsByYear W20086937872019 @default.
- W2008693787 countsByYear W20086937872020 @default.
- W2008693787 countsByYear W20086937872021 @default.
- W2008693787 countsByYear W20086937872022 @default.
- W2008693787 crossrefType "journal-article" @default.
- W2008693787 hasAuthorship W2008693787A5000307534 @default.
- W2008693787 hasAuthorship W2008693787A5007424651 @default.
- W2008693787 hasAuthorship W2008693787A5041738664 @default.
- W2008693787 hasAuthorship W2008693787A5065775518 @default.
- W2008693787 hasBestOaLocation W20086937871 @default.
- W2008693787 hasConcept C105795698 @default.
- W2008693787 hasConcept C106131492 @default.
- W2008693787 hasConcept C11413529 @default.
- W2008693787 hasConcept C121684516 @default.
- W2008693787 hasConcept C126255220 @default.
- W2008693787 hasConcept C13724139 @default.
- W2008693787 hasConcept C137800194 @default.
- W2008693787 hasConcept C140779682 @default.
- W2008693787 hasConcept C157286648 @default.
- W2008693787 hasConcept C178650346 @default.
- W2008693787 hasConcept C185429906 @default.
- W2008693787 hasConcept C202444582 @default.
- W2008693787 hasConcept C31972630 @default.
- W2008693787 hasConcept C33676613 @default.
- W2008693787 hasConcept C33923547 @default.
- W2008693787 hasConcept C41008148 @default.
- W2008693787 hasConcept C502989409 @default.
- W2008693787 hasConcept C57493831 @default.
- W2008693787 hasConcept C58489278 @default.
- W2008693787 hasConcept C9936470 @default.
- W2008693787 hasConceptScore W2008693787C105795698 @default.
- W2008693787 hasConceptScore W2008693787C106131492 @default.
- W2008693787 hasConceptScore W2008693787C11413529 @default.
- W2008693787 hasConceptScore W2008693787C121684516 @default.
- W2008693787 hasConceptScore W2008693787C126255220 @default.
- W2008693787 hasConceptScore W2008693787C13724139 @default.
- W2008693787 hasConceptScore W2008693787C137800194 @default.
- W2008693787 hasConceptScore W2008693787C140779682 @default.
- W2008693787 hasConceptScore W2008693787C157286648 @default.
- W2008693787 hasConceptScore W2008693787C178650346 @default.