Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008902151> ?p ?o ?g. }
- W2008902151 endingPage "935" @default.
- W2008902151 startingPage "925" @default.
- W2008902151 abstract "In this paper, we propose a novel framework for the automated extraction of the brain from T1-weighted MR images. The proposed approach is primarily based on the integration of a stochastic model [a two-level Markov-Gibbs random field (MGRF)] that serves to learn the visual appearance of the brain texture, and a geometric model (the brain isosurfaces) that preserves the brain geometry during the extraction process. The proposed framework consists of three main steps: 1) Following bias correction of the brain, a new three-dimensional (3-D) MGRF having a 26-pairwise interaction model is applied to enhance the homogeneity of MR images and preserve the 3-D edges between different brain tissues. 2) The nonbrain tissue found in the MR images is initially removed using the brain extraction tool (BET), and then the brain is parceled to nested isosurfaces using a fast marching level set method. 3) Finally, a classification step is applied in order to accurately remove the remaining parts of the skull without distorting the brain geometry. The classification of each voxel found on the isosurfaces is made based on the first- and second-order visual appearance features. The first-order visual appearance is estimated using a linear combination of discrete Gaussians (LCDG) to model the intensity distribution of the brain signals. The second-order visual appearance is constructed using an MGRF model with analytically estimated parameters. The fusion of the LCDG and MGRF, along with their analytical estimation, allows the approach to be fast and accurate for use in clinical applications. The proposed approach was tested on in vivo data using 300 infant 3-D MR brain scans, which were qualitatively validated by an MR expert. In addition, it was quantitatively validated using 30 datasets based on three metrics: the Dice coefficient, the 95% modified Hausdorff distance, and absolute brain volume difference. Results showed the capability of the proposed approach, outperforming four widely used BETs: BET, BET2, brain surface extractor, and infant brain extraction and analysis toolbox. Experiments conducted also proved that the proposed framework can be generalized to adult brain extraction as well." @default.
- W2008902151 created "2016-06-24" @default.
- W2008902151 creator A5003027886 @default.
- W2008902151 creator A5003428654 @default.
- W2008902151 creator A5013054530 @default.
- W2008902151 creator A5015925094 @default.
- W2008902151 creator A5030490566 @default.
- W2008902151 creator A5032571776 @default.
- W2008902151 creator A5042654952 @default.
- W2008902151 creator A5056575079 @default.
- W2008902151 creator A5064118115 @default.
- W2008902151 creator A5071925136 @default.
- W2008902151 creator A5075057705 @default.
- W2008902151 creator A5079299310 @default.
- W2008902151 date "2016-05-01" @default.
- W2008902151 modified "2023-10-07" @default.
- W2008902151 title "Infant Brain Extraction in T1-Weighted MR Images Using BET and Refinement Using LCDG and MGRF Models" @default.
- W2008902151 cites W1875387157 @default.
- W2008902151 cites W1972829195 @default.
- W2008902151 cites W1974447697 @default.
- W2008902151 cites W1988366576 @default.
- W2008902151 cites W1993947467 @default.
- W2008902151 cites W1994157885 @default.
- W2008902151 cites W1995622889 @default.
- W2008902151 cites W1999893542 @default.
- W2008902151 cites W2001862232 @default.
- W2008902151 cites W2019346246 @default.
- W2008902151 cites W2021787435 @default.
- W2008902151 cites W2023933689 @default.
- W2008902151 cites W2067065405 @default.
- W2008902151 cites W2071881327 @default.
- W2008902151 cites W2091073327 @default.
- W2008902151 cites W2092245015 @default.
- W2008902151 cites W2115384210 @default.
- W2008902151 cites W2117340355 @default.
- W2008902151 cites W2118987707 @default.
- W2008902151 cites W2127689830 @default.
- W2008902151 cites W2128993115 @default.
- W2008902151 cites W2138197318 @default.
- W2008902151 cites W2139590689 @default.
- W2008902151 cites W2145661921 @default.
- W2008902151 cites W2150265050 @default.
- W2008902151 cites W2151721316 @default.
- W2008902151 cites W2157270343 @default.
- W2008902151 cites W2166887721 @default.
- W2008902151 cites W2167290407 @default.
- W2008902151 cites W2169952919 @default.
- W2008902151 cites W2170154054 @default.
- W2008902151 cites W2327865102 @default.
- W2008902151 cites W2476496150 @default.
- W2008902151 doi "https://doi.org/10.1109/jbhi.2015.2415477" @default.
- W2008902151 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25823048" @default.
- W2008902151 hasPublicationYear "2016" @default.
- W2008902151 type Work @default.
- W2008902151 sameAs 2008902151 @default.
- W2008902151 citedByCount "36" @default.
- W2008902151 countsByYear W20089021512015 @default.
- W2008902151 countsByYear W20089021512016 @default.
- W2008902151 countsByYear W20089021512017 @default.
- W2008902151 countsByYear W20089021512018 @default.
- W2008902151 countsByYear W20089021512019 @default.
- W2008902151 countsByYear W20089021512020 @default.
- W2008902151 countsByYear W20089021512021 @default.
- W2008902151 countsByYear W20089021512022 @default.
- W2008902151 countsByYear W20089021512023 @default.
- W2008902151 crossrefType "journal-article" @default.
- W2008902151 hasAuthorship W2008902151A5003027886 @default.
- W2008902151 hasAuthorship W2008902151A5003428654 @default.
- W2008902151 hasAuthorship W2008902151A5013054530 @default.
- W2008902151 hasAuthorship W2008902151A5015925094 @default.
- W2008902151 hasAuthorship W2008902151A5030490566 @default.
- W2008902151 hasAuthorship W2008902151A5032571776 @default.
- W2008902151 hasAuthorship W2008902151A5042654952 @default.
- W2008902151 hasAuthorship W2008902151A5056575079 @default.
- W2008902151 hasAuthorship W2008902151A5064118115 @default.
- W2008902151 hasAuthorship W2008902151A5071925136 @default.
- W2008902151 hasAuthorship W2008902151A5075057705 @default.
- W2008902151 hasAuthorship W2008902151A5079299310 @default.
- W2008902151 hasBestOaLocation W20089021512 @default.
- W2008902151 hasConcept C124504099 @default.
- W2008902151 hasConcept C153180895 @default.
- W2008902151 hasConcept C154945302 @default.
- W2008902151 hasConcept C184898388 @default.
- W2008902151 hasConcept C2778045648 @default.
- W2008902151 hasConcept C31972630 @default.
- W2008902151 hasConcept C41008148 @default.
- W2008902151 hasConcept C54170458 @default.
- W2008902151 hasConcept C89600930 @default.
- W2008902151 hasConceptScore W2008902151C124504099 @default.
- W2008902151 hasConceptScore W2008902151C153180895 @default.
- W2008902151 hasConceptScore W2008902151C154945302 @default.
- W2008902151 hasConceptScore W2008902151C184898388 @default.
- W2008902151 hasConceptScore W2008902151C2778045648 @default.
- W2008902151 hasConceptScore W2008902151C31972630 @default.
- W2008902151 hasConceptScore W2008902151C41008148 @default.
- W2008902151 hasConceptScore W2008902151C54170458 @default.
- W2008902151 hasConceptScore W2008902151C89600930 @default.
- W2008902151 hasIssue "3" @default.