Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009016750> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2009016750 endingPage "30" @default.
- W2009016750 startingPage "21" @default.
- W2009016750 abstract "Objective To generate a neural network algorithm which computes a probability of malignancy score for pre-operative discrimination between malignant and benign adnexal tumours. Design A retrospective analysis of previously collected data. Information from 75% of the study group was used to train an artificial neural network and the remainder was used for validation. Setting The Gynaecological Ultrasound Research Unit at King's College Hospital, London. Population Sixty-seven women with known adnexal mass who had been examined using transvaginal B-mode ultrasonography and colour Doppler imaging with pulse spectral analysis immediately before surgery. The excised masses were classified histologically as benign (n= 52) or malignant (n= 19, of which three were borderline. Methods The variables that were put into the artificial neural network were: age, menopausal status, maximum tumour diameter, tumour volume, locularity, the presence of papillary projections, the presence of random echogenecity, the presence of analysable blood flow velocity waveforms, the peak systolic velocity, time-averaged maximum velocity, the pulsatility index, and resistance index. Histological classification, categorised as benign or malignant, was the output result. Results A variant of the back propagation method was selected to train the network. The overall architecture of the network with the best performance contained an input layer with four variables (age, time-averaged maximum velocity, papillary projection score and maximum tumour diameter), a hidden layer with three units and an output layer with one. The sensitivity and specificity at the optimum diagnostic decision value for the artificial neural network output (0.45) were 100% (95% CI 78.2%–100%) and 98.1% (95% CI 89.5%–100%), respectively. These values were significantly better than those obtained from the independent use of the resistance index, pulsatility index, time-averaged maximum velocity or peak systolic velocity at their optimum decision values (P < 0.01). Conclusion Artificial neural networks may be used on clinical and ultrasound derived end-points to accurately predict ovarian malignancy. There is a need for a prospective evaluation of this technique using a larger number of patients." @default.
- W2009016750 created "2016-06-24" @default.
- W2009016750 creator A5032065597 @default.
- W2009016750 creator A5033105406 @default.
- W2009016750 creator A5039661022 @default.
- W2009016750 creator A5067261020 @default.
- W2009016750 creator A5085822617 @default.
- W2009016750 date "1999-01-01" @default.
- W2009016750 modified "2023-10-15" @default.
- W2009016750 title "Sonographic prediction of malignancy in adnexal masses using an artificial neural network" @default.
- W2009016750 cites W1550605325 @default.
- W2009016750 cites W1969609424 @default.
- W2009016750 cites W1976798724 @default.
- W2009016750 cites W1978005778 @default.
- W2009016750 cites W1990108357 @default.
- W2009016750 cites W1999417302 @default.
- W2009016750 cites W2027363651 @default.
- W2009016750 cites W2032389573 @default.
- W2009016750 cites W2032770855 @default.
- W2009016750 cites W2036257926 @default.
- W2009016750 cites W2050379680 @default.
- W2009016750 cites W2057566462 @default.
- W2009016750 cites W2058961400 @default.
- W2009016750 cites W2060204932 @default.
- W2009016750 cites W2071636957 @default.
- W2009016750 cites W2073184345 @default.
- W2009016750 cites W2086979200 @default.
- W2009016750 cites W2102150307 @default.
- W2009016750 cites W2102965090 @default.
- W2009016750 cites W2122095120 @default.
- W2009016750 cites W2139449758 @default.
- W2009016750 cites W2151817208 @default.
- W2009016750 cites W2165146036 @default.
- W2009016750 cites W2256943992 @default.
- W2009016750 cites W2336670396 @default.
- W2009016750 doi "https://doi.org/10.1111/j.1471-0528.1999.tb08080.x" @default.
- W2009016750 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10426255" @default.
- W2009016750 hasPublicationYear "1999" @default.
- W2009016750 type Work @default.
- W2009016750 sameAs 2009016750 @default.
- W2009016750 citedByCount "73" @default.
- W2009016750 countsByYear W20090167502012 @default.
- W2009016750 countsByYear W20090167502013 @default.
- W2009016750 countsByYear W20090167502014 @default.
- W2009016750 countsByYear W20090167502015 @default.
- W2009016750 countsByYear W20090167502018 @default.
- W2009016750 countsByYear W20090167502020 @default.
- W2009016750 countsByYear W20090167502021 @default.
- W2009016750 countsByYear W20090167502022 @default.
- W2009016750 countsByYear W20090167502023 @default.
- W2009016750 crossrefType "journal-article" @default.
- W2009016750 hasAuthorship W2009016750A5032065597 @default.
- W2009016750 hasAuthorship W2009016750A5033105406 @default.
- W2009016750 hasAuthorship W2009016750A5039661022 @default.
- W2009016750 hasAuthorship W2009016750A5067261020 @default.
- W2009016750 hasAuthorship W2009016750A5085822617 @default.
- W2009016750 hasBestOaLocation W20090167501 @default.
- W2009016750 hasConcept C126322002 @default.
- W2009016750 hasConcept C126838900 @default.
- W2009016750 hasConcept C141071460 @default.
- W2009016750 hasConcept C143753070 @default.
- W2009016750 hasConcept C154945302 @default.
- W2009016750 hasConcept C2779399171 @default.
- W2009016750 hasConcept C41008148 @default.
- W2009016750 hasConcept C50644808 @default.
- W2009016750 hasConcept C71924100 @default.
- W2009016750 hasConceptScore W2009016750C126322002 @default.
- W2009016750 hasConceptScore W2009016750C126838900 @default.
- W2009016750 hasConceptScore W2009016750C141071460 @default.
- W2009016750 hasConceptScore W2009016750C143753070 @default.
- W2009016750 hasConceptScore W2009016750C154945302 @default.
- W2009016750 hasConceptScore W2009016750C2779399171 @default.
- W2009016750 hasConceptScore W2009016750C41008148 @default.
- W2009016750 hasConceptScore W2009016750C50644808 @default.
- W2009016750 hasConceptScore W2009016750C71924100 @default.
- W2009016750 hasIssue "1" @default.
- W2009016750 hasLocation W20090167501 @default.
- W2009016750 hasLocation W20090167502 @default.
- W2009016750 hasOpenAccess W2009016750 @default.
- W2009016750 hasPrimaryLocation W20090167501 @default.
- W2009016750 hasRelatedWork W2029967375 @default.
- W2009016750 hasRelatedWork W2351153092 @default.
- W2009016750 hasRelatedWork W2357989941 @default.
- W2009016750 hasRelatedWork W2377100155 @default.
- W2009016750 hasRelatedWork W2403801615 @default.
- W2009016750 hasRelatedWork W2793887421 @default.
- W2009016750 hasRelatedWork W3153228984 @default.
- W2009016750 hasRelatedWork W4200563007 @default.
- W2009016750 hasRelatedWork W4247453431 @default.
- W2009016750 hasRelatedWork W4312779314 @default.
- W2009016750 hasVolume "106" @default.
- W2009016750 isParatext "false" @default.
- W2009016750 isRetracted "false" @default.
- W2009016750 magId "2009016750" @default.
- W2009016750 workType "article" @default.