Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009078332> ?p ?o ?g. }
- W2009078332 endingPage "2204" @default.
- W2009078332 startingPage "2194" @default.
- W2009078332 abstract "Background: The use of biodegradable synthetic nerve conduits for the reconstruction of segmental nerve defects has been extensively reported in both animal and human studies, with a majority of studies evaluating sensory nerve recovery. However, few studies have compared these nerve conduits for functional motor recovery. The purpose of this study was to compare three commercially available, synthetic, bioabsorbable nerve conduits and autograft with respect to compound muscle action potentials, maximum isometric tetanic force, wet muscle weight, and nerve histomorphometry. Methods: Eighty Lewis rats were divided into four groups according to the type of repair of a 10-mm excision of the sciatic nerve: group I had a reversed autograft; group II, a poly-DL-lactide-ε-caprolactone conduit; group III, a type-I collagen conduit; and group IV, a polyglycolic acid conduit. All results were compared with the contralateral side. At twelve weeks, the rats underwent bilateral measurements of the compound muscle action potentials of the tibialis anterior and flexor digiti quinti brevis muscles, isometric tetanic force and muscle weight of the tibialis anterior, and peroneal nerve histomorphometry. Results: At twelve weeks, no difference in the percentage of recovery between the autograft and the poly-DL-lactide-ε-caprolactone conduit was observed with respect to compound muscle action potentials, isometric muscle force, muscle weight, and axon count measurements. The poly-DL-lactide-ε-caprolactone and collagen conduits remained structurally stable at twelve weeks, while the polyglycolic acid conduits had completely collapsed. The polyglycolic acid conduit had the poorest results, with a recovery rate of 15% for compound muscle action potentials and 29% for muscle force. Conclusions: The functional outcome in this rat model was similar for the autograft and the poly-DL-lactide-ε-caprolactone conduits when they were used to reconstruct a 10-mm sciatic nerve defect. Functional recovery following the use of the polyglycolic acid conduit was the poorest. Clinical Relevance: Differences were demonstrated between commercially available conduits in this rat model. These results will allow surgeons to choose the optimal bioabsorbable synthetic conduit for human segmental nerve defect reconstruction." @default.
- W2009078332 created "2016-06-24" @default.
- W2009078332 creator A5004965074 @default.
- W2009078332 creator A5016455658 @default.
- W2009078332 creator A5043980656 @default.
- W2009078332 creator A5079179265 @default.
- W2009078332 creator A5089988885 @default.
- W2009078332 date "2009-09-01" @default.
- W2009078332 modified "2023-09-30" @default.
- W2009078332 title "Treatment of a Segmental Nerve Defect in the Rat with Use of Bioabsorbable Synthetic Nerve Conduits: A Comparison of Commercially Available Conduits" @default.
- W2009078332 cites W113485285 @default.
- W2009078332 cites W178798331 @default.
- W2009078332 cites W1967064653 @default.
- W2009078332 cites W1969504869 @default.
- W2009078332 cites W1970004705 @default.
- W2009078332 cites W1977727590 @default.
- W2009078332 cites W1980708762 @default.
- W2009078332 cites W1986553129 @default.
- W2009078332 cites W1997905786 @default.
- W2009078332 cites W2003691260 @default.
- W2009078332 cites W2004140386 @default.
- W2009078332 cites W2005859214 @default.
- W2009078332 cites W2006761552 @default.
- W2009078332 cites W2017959562 @default.
- W2009078332 cites W2021378435 @default.
- W2009078332 cites W2026890274 @default.
- W2009078332 cites W2026990820 @default.
- W2009078332 cites W2046557041 @default.
- W2009078332 cites W2048063996 @default.
- W2009078332 cites W2048664089 @default.
- W2009078332 cites W2048670135 @default.
- W2009078332 cites W2052902462 @default.
- W2009078332 cites W2053155316 @default.
- W2009078332 cites W2054344839 @default.
- W2009078332 cites W2061944529 @default.
- W2009078332 cites W2062371191 @default.
- W2009078332 cites W2068318651 @default.
- W2009078332 cites W2071748996 @default.
- W2009078332 cites W2074895192 @default.
- W2009078332 cites W2078992571 @default.
- W2009078332 cites W2081711470 @default.
- W2009078332 cites W2081964437 @default.
- W2009078332 cites W2090106797 @default.
- W2009078332 cites W2093771846 @default.
- W2009078332 cites W2095508841 @default.
- W2009078332 cites W2105454620 @default.
- W2009078332 cites W2153293010 @default.
- W2009078332 cites W2154309821 @default.
- W2009078332 cites W2168017004 @default.
- W2009078332 cites W4207013827 @default.
- W2009078332 cites W4252983429 @default.
- W2009078332 doi "https://doi.org/10.2106/jbjs.h.01301" @default.
- W2009078332 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19723997" @default.
- W2009078332 hasPublicationYear "2009" @default.
- W2009078332 type Work @default.
- W2009078332 sameAs 2009078332 @default.
- W2009078332 citedByCount "121" @default.
- W2009078332 countsByYear W20090783322012 @default.
- W2009078332 countsByYear W20090783322013 @default.
- W2009078332 countsByYear W20090783322014 @default.
- W2009078332 countsByYear W20090783322015 @default.
- W2009078332 countsByYear W20090783322016 @default.
- W2009078332 countsByYear W20090783322017 @default.
- W2009078332 countsByYear W20090783322018 @default.
- W2009078332 countsByYear W20090783322019 @default.
- W2009078332 countsByYear W20090783322020 @default.
- W2009078332 countsByYear W20090783322021 @default.
- W2009078332 countsByYear W20090783322022 @default.
- W2009078332 countsByYear W20090783322023 @default.
- W2009078332 crossrefType "journal-article" @default.
- W2009078332 hasAuthorship W2009078332A5004965074 @default.
- W2009078332 hasAuthorship W2009078332A5016455658 @default.
- W2009078332 hasAuthorship W2009078332A5043980656 @default.
- W2009078332 hasAuthorship W2009078332A5079179265 @default.
- W2009078332 hasAuthorship W2009078332A5089988885 @default.
- W2009078332 hasConcept C103486182 @default.
- W2009078332 hasConcept C105702510 @default.
- W2009078332 hasConcept C126322002 @default.
- W2009078332 hasConcept C127413603 @default.
- W2009078332 hasConcept C136940099 @default.
- W2009078332 hasConcept C141071460 @default.
- W2009078332 hasConcept C151626666 @default.
- W2009078332 hasConcept C185263204 @default.
- W2009078332 hasConcept C2776379899 @default.
- W2009078332 hasConcept C2779959927 @default.
- W2009078332 hasConcept C2781149210 @default.
- W2009078332 hasConcept C71924100 @default.
- W2009078332 hasConcept C78519656 @default.
- W2009078332 hasConcept C89836073 @default.
- W2009078332 hasConceptScore W2009078332C103486182 @default.
- W2009078332 hasConceptScore W2009078332C105702510 @default.
- W2009078332 hasConceptScore W2009078332C126322002 @default.
- W2009078332 hasConceptScore W2009078332C127413603 @default.
- W2009078332 hasConceptScore W2009078332C136940099 @default.
- W2009078332 hasConceptScore W2009078332C141071460 @default.
- W2009078332 hasConceptScore W2009078332C151626666 @default.
- W2009078332 hasConceptScore W2009078332C185263204 @default.
- W2009078332 hasConceptScore W2009078332C2776379899 @default.