Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009121102> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2009121102 abstract "In online advertising market it is crucial to provide advertisers with a reliable measurement of advertising effectiveness to make better marketing campaign planning. The basic idea for ad effectiveness measurement is to compare the performance (e.g., success rate) among users who were and who were not exposed to a certain treatment of ads. When a randomized experiment is not available, a naive comparison can be biased because exposed and unexposed populations typically have different features. One solid methodology for a fair comparison is to apply inverse propensity weighting with doubly robust estimation to the observational data. However the existing methods were not designed for the online advertising campaign, which usually suffers from huge volume of users, high dimensionality, high sparsity and imbalance. We propose an efficient framework to address these challenges in a real campaign circumstance. We utilize gradient boosting stumps for feature selection and gradient boosting trees for model fitting, and propose a subsampling-and-backscaling procedure that enables analysis on extremely sparse conversion data. The choice of features, models and feature selection scheme are validated with irrelevant conversion test. We further propose a parallel computing strategy, combined with the subsampling-and-backscaling procedure to reach computational efficiency. Our framework is applied to an online campaign involving millions of unique users, which shows substantially better model fitting and efficiency. Our framework can be further generalized to comparison of multiple treatments and more general treatment regimes, as sketched in the paper. Our framework is not limited to online advertising, but also applicable to other circumstances (e.g., social science) where a 'fair' comparison is needed with observational data." @default.
- W2009121102 created "2016-06-24" @default.
- W2009121102 creator A5022639226 @default.
- W2009121102 creator A5030589675 @default.
- W2009121102 creator A5034945086 @default.
- W2009121102 creator A5043869739 @default.
- W2009121102 creator A5048068530 @default.
- W2009121102 creator A5076562276 @default.
- W2009121102 date "2014-02-24" @default.
- W2009121102 modified "2023-09-28" @default.
- W2009121102 title "An efficient framework for online advertising effectiveness measurement and comparison" @default.
- W2009121102 cites W1561081775 @default.
- W2009121102 cites W1990139173 @default.
- W2009121102 cites W1993206692 @default.
- W2009121102 cites W2011256240 @default.
- W2009121102 cites W2028040032 @default.
- W2009121102 cites W2047272082 @default.
- W2009121102 cites W2050015638 @default.
- W2009121102 cites W2070493638 @default.
- W2009121102 cites W2080061756 @default.
- W2009121102 cites W2111078766 @default.
- W2009121102 cites W2116739230 @default.
- W2009121102 cites W2121878111 @default.
- W2009121102 cites W2132166479 @default.
- W2009121102 cites W2137370054 @default.
- W2009121102 cites W2144387798 @default.
- W2009121102 cites W2150291618 @default.
- W2009121102 cites W2261421703 @default.
- W2009121102 cites W3126019886 @default.
- W2009121102 cites W4239728164 @default.
- W2009121102 doi "https://doi.org/10.1145/2556195.2556235" @default.
- W2009121102 hasPublicationYear "2014" @default.
- W2009121102 type Work @default.
- W2009121102 sameAs 2009121102 @default.
- W2009121102 citedByCount "11" @default.
- W2009121102 countsByYear W20091211022015 @default.
- W2009121102 countsByYear W20091211022016 @default.
- W2009121102 countsByYear W20091211022017 @default.
- W2009121102 countsByYear W20091211022018 @default.
- W2009121102 countsByYear W20091211022020 @default.
- W2009121102 countsByYear W20091211022021 @default.
- W2009121102 countsByYear W20091211022022 @default.
- W2009121102 crossrefType "proceedings-article" @default.
- W2009121102 hasAuthorship W2009121102A5022639226 @default.
- W2009121102 hasAuthorship W2009121102A5030589675 @default.
- W2009121102 hasAuthorship W2009121102A5034945086 @default.
- W2009121102 hasAuthorship W2009121102A5043869739 @default.
- W2009121102 hasAuthorship W2009121102A5048068530 @default.
- W2009121102 hasAuthorship W2009121102A5076562276 @default.
- W2009121102 hasConcept C110875604 @default.
- W2009121102 hasConcept C136764020 @default.
- W2009121102 hasConcept C41008148 @default.
- W2009121102 hasConcept C512338625 @default.
- W2009121102 hasConceptScore W2009121102C110875604 @default.
- W2009121102 hasConceptScore W2009121102C136764020 @default.
- W2009121102 hasConceptScore W2009121102C41008148 @default.
- W2009121102 hasConceptScore W2009121102C512338625 @default.
- W2009121102 hasLocation W20091211021 @default.
- W2009121102 hasOpenAccess W2009121102 @default.
- W2009121102 hasPrimaryLocation W20091211021 @default.
- W2009121102 hasRelatedWork W1985759455 @default.
- W2009121102 hasRelatedWork W2093578348 @default.
- W2009121102 hasRelatedWork W2358668433 @default.
- W2009121102 hasRelatedWork W2376932109 @default.
- W2009121102 hasRelatedWork W2382290278 @default.
- W2009121102 hasRelatedWork W2390279801 @default.
- W2009121102 hasRelatedWork W2748952813 @default.
- W2009121102 hasRelatedWork W2766271392 @default.
- W2009121102 hasRelatedWork W2899084033 @default.
- W2009121102 hasRelatedWork W2964090326 @default.
- W2009121102 isParatext "false" @default.
- W2009121102 isRetracted "false" @default.
- W2009121102 magId "2009121102" @default.
- W2009121102 workType "article" @default.