Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009133326> ?p ?o ?g. }
- W2009133326 endingPage "555" @default.
- W2009133326 startingPage "537" @default.
- W2009133326 abstract "Abstract. Subduction of oceanic lithosphere brings water into the Earth's upper mantle. Previous numerical studies have shown how slab dehydration and mantle hydration can impact the dynamics of a subduction system by allowing a more vigorous mantle flow and promoting localisation of deformation in the lithosphere and mantle. The depths at which dehydration reactions occur in the hydrated portions of the slab are well constrained in these models by thermodynamic calculations. However, computational models use different numerical schemes to simulate the migration of free water. We aim to show the influence of the numerical scheme of free water migration on the dynamics of the upper mantle and more specifically the mantle wedge. We investigate the following three simple migration schemes with a finite-element model: (1) element-wise vertical migration of free water, occurring independent of the flow of the solid phase; (2) an imposed vertical free water velocity; and (3) a Darcy velocity, where the free water velocity is a function of the pressure gradient caused by the difference in density between water and the surrounding rocks. In addition, the flow of the solid material field also moves the free water in the imposed vertical velocity and Darcy schemes. We first test the influence of the water migration scheme using a simple model that simulates the sinking of a cold, hydrated cylinder into a dry, warm mantle. We find that the free water migration scheme has only a limited impact on the water distribution after 1 Myr in these models. We next investigate slab dehydration and mantle hydration with a thermomechanical subduction model that includes brittle behaviour and viscous water-dependent creep flow laws. Our models demonstrate that the bound water distribution is not greatly influenced by the water migration scheme whereas the free water distribution is. We find that a bound water-dependent creep flow law results in a broader area of hydration in the mantle wedge, which feeds back to the dynamics of the system by the associated weakening. This finding underlines the importance of using dynamic time evolution models to investigate the effects of (de)hydration. We also show that hydrated material can be transported down to the base of the upper mantle at 670 km. Although (de)hydration processes influence subduction dynamics, we find that the exact numerical implementation of free water migration is not important in the basic schemes we investigated. A simple implementation of water migration could be sufficient for a first-order impression of the effects of water for studies that focus on large-scale features of subduction dynamics." @default.
- W2009133326 created "2016-06-24" @default.
- W2009133326 creator A5064727810 @default.
- W2009133326 creator A5068528746 @default.
- W2009133326 date "2014-06-26" @default.
- W2009133326 modified "2023-10-01" @default.
- W2009133326 title "Testing the effects of basic numerical implementations of water migration on models of subduction dynamics" @default.
- W2009133326 cites W1489332407 @default.
- W2009133326 cites W1543257786 @default.
- W2009133326 cites W1636995053 @default.
- W2009133326 cites W1779599893 @default.
- W2009133326 cites W1830358639 @default.
- W2009133326 cites W1968288901 @default.
- W2009133326 cites W1969329906 @default.
- W2009133326 cites W1970604866 @default.
- W2009133326 cites W1971806945 @default.
- W2009133326 cites W1972423246 @default.
- W2009133326 cites W1973811075 @default.
- W2009133326 cites W1974881268 @default.
- W2009133326 cites W1978534444 @default.
- W2009133326 cites W1982927349 @default.
- W2009133326 cites W1985160890 @default.
- W2009133326 cites W1987780664 @default.
- W2009133326 cites W1991362933 @default.
- W2009133326 cites W1994010532 @default.
- W2009133326 cites W1995378196 @default.
- W2009133326 cites W1996435354 @default.
- W2009133326 cites W2003605988 @default.
- W2009133326 cites W2006660152 @default.
- W2009133326 cites W2017649324 @default.
- W2009133326 cites W2020108095 @default.
- W2009133326 cites W2020714549 @default.
- W2009133326 cites W2028299312 @default.
- W2009133326 cites W2035157339 @default.
- W2009133326 cites W2038325228 @default.
- W2009133326 cites W2038920423 @default.
- W2009133326 cites W2041285177 @default.
- W2009133326 cites W2041975117 @default.
- W2009133326 cites W2042820448 @default.
- W2009133326 cites W2046266025 @default.
- W2009133326 cites W2046742563 @default.
- W2009133326 cites W2048993097 @default.
- W2009133326 cites W2049049928 @default.
- W2009133326 cites W2051303926 @default.
- W2009133326 cites W2055954432 @default.
- W2009133326 cites W2076753903 @default.
- W2009133326 cites W2087510706 @default.
- W2009133326 cites W2096682995 @default.
- W2009133326 cites W2096823403 @default.
- W2009133326 cites W2100653978 @default.
- W2009133326 cites W2117783357 @default.
- W2009133326 cites W2120057150 @default.
- W2009133326 cites W2121575730 @default.
- W2009133326 cites W2130640980 @default.
- W2009133326 cites W2131350141 @default.
- W2009133326 cites W2138359451 @default.
- W2009133326 cites W2155128667 @default.
- W2009133326 cites W2162179574 @default.
- W2009133326 cites W2167983097 @default.
- W2009133326 cites W2171180393 @default.
- W2009133326 cites W2724477917 @default.
- W2009133326 cites W3207805732 @default.
- W2009133326 cites W4234440840 @default.
- W2009133326 doi "https://doi.org/10.5194/se-5-537-2014" @default.
- W2009133326 hasPublicationYear "2014" @default.
- W2009133326 type Work @default.
- W2009133326 sameAs 2009133326 @default.
- W2009133326 citedByCount "12" @default.
- W2009133326 countsByYear W20091333262015 @default.
- W2009133326 countsByYear W20091333262017 @default.
- W2009133326 countsByYear W20091333262018 @default.
- W2009133326 countsByYear W20091333262019 @default.
- W2009133326 countsByYear W20091333262020 @default.
- W2009133326 countsByYear W20091333262021 @default.
- W2009133326 countsByYear W20091333262022 @default.
- W2009133326 countsByYear W20091333262023 @default.
- W2009133326 crossrefType "journal-article" @default.
- W2009133326 hasAuthorship W2009133326A5064727810 @default.
- W2009133326 hasAuthorship W2009133326A5068528746 @default.
- W2009133326 hasBestOaLocation W20091333261 @default.
- W2009133326 hasConcept C113740112 @default.
- W2009133326 hasConcept C121332964 @default.
- W2009133326 hasConcept C127313418 @default.
- W2009133326 hasConcept C165205528 @default.
- W2009133326 hasConcept C16942324 @default.
- W2009133326 hasConcept C190799397 @default.
- W2009133326 hasConcept C57879066 @default.
- W2009133326 hasConcept C58097730 @default.
- W2009133326 hasConcept C67236022 @default.
- W2009133326 hasConcept C73462661 @default.
- W2009133326 hasConcept C77928131 @default.
- W2009133326 hasConcept C8058405 @default.
- W2009133326 hasConceptScore W2009133326C113740112 @default.
- W2009133326 hasConceptScore W2009133326C121332964 @default.
- W2009133326 hasConceptScore W2009133326C127313418 @default.
- W2009133326 hasConceptScore W2009133326C165205528 @default.
- W2009133326 hasConceptScore W2009133326C16942324 @default.
- W2009133326 hasConceptScore W2009133326C190799397 @default.