Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009201116> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2009201116 abstract "Two Banach algebras are naturally associated with a locally compact group G: the group algebra, L1 (G), and the measure algebra, M(G) . For these two Banach algebras we determine all isometric involutions. Each of these Banach algebras has a natural involution. We will show that an isometric involution, (#), is the natural involution on L1 (G) if and only if the closure in the strict topology of the convex hull of the norm one unitaries in M(G) is equal to the unit ball of M(G) . There is a well-known relationship between the involutive representation theory of L1 (G), with the natural involution, and the representation theory of G. We develop a similar theory for the other isometric involutions on L1 (G). The main result is: if (#) is an isometric involution on L1 (G) and T is an involutive representation of (L1 (G), #) , then T is also an involutive representation of L1 (G) with the natural involution. INTRODUCTION AND NOTATION In the study of locally compact groups two group algebras are of special interest. In 1952 Wendel showed that the algebra L1 (G), of all absolutely integrable functions on G considered as a Banach algebra (with convolution multiplication), characterizes the locally compact group G up to homeomorphic isomorphism [10]. In 1964 Johnson using Wendel's result proved that M(G), the algebra of complex regular Borel measures on G (with convolution multiplication and the total variation norm), is also a complete set of invariants for G [6]. Both of these group algebras have a natural involution, but the involution was not used by either Wendel or Johnson. Although the natural involution on L1 (G) was not used by Wendel, it is of importance in the representation theory of locally compact groups. In [8] we used the involutive structure to give characterizations of L1 (G) and M(G) as Banach *-algebras. The question arises, how unique are the natural involutions on L1 (G) and M(G) ? Using some of the results of [8] we will show that for most groups the natural involution on either L1 (G) or M(G) is far from being unique. Received by the editors July 21, 1992 and, in revised form, October 6, 1992. 1991 Mathematics Subject Classification. Primary 43A20; Secondary 43A10, 46K99." @default.
- W2009201116 created "2016-06-24" @default.
- W2009201116 creator A5051537696 @default.
- W2009201116 date "1994-03-01" @default.
- W2009201116 modified "2023-09-23" @default.
- W2009201116 title "Involutions on algebras arising from locally compact groups" @default.
- W2009201116 cites W1544120575 @default.
- W2009201116 cites W1583086760 @default.
- W2009201116 cites W1964564441 @default.
- W2009201116 cites W1969304434 @default.
- W2009201116 cites W2037923415 @default.
- W2009201116 cites W2070064197 @default.
- W2009201116 cites W2086652517 @default.
- W2009201116 cites W2140794700 @default.
- W2009201116 cites W2319308948 @default.
- W2009201116 doi "https://doi.org/10.1090/s0002-9939-1994-1185273-x" @default.
- W2009201116 hasPublicationYear "1994" @default.
- W2009201116 type Work @default.
- W2009201116 sameAs 2009201116 @default.
- W2009201116 citedByCount "3" @default.
- W2009201116 crossrefType "journal-article" @default.
- W2009201116 hasAuthorship W2009201116A5051537696 @default.
- W2009201116 hasBestOaLocation W20092011161 @default.
- W2009201116 hasConcept C118615104 @default.
- W2009201116 hasConcept C120047569 @default.
- W2009201116 hasConcept C136119220 @default.
- W2009201116 hasConcept C17744445 @default.
- W2009201116 hasConcept C178790620 @default.
- W2009201116 hasConcept C185592680 @default.
- W2009201116 hasConcept C191413488 @default.
- W2009201116 hasConcept C199539241 @default.
- W2009201116 hasConcept C202444582 @default.
- W2009201116 hasConcept C2776038885 @default.
- W2009201116 hasConcept C2781311116 @default.
- W2009201116 hasConcept C2781409172 @default.
- W2009201116 hasConcept C31498916 @default.
- W2009201116 hasConcept C33923547 @default.
- W2009201116 hasConcept C58450382 @default.
- W2009201116 hasConcept C94625758 @default.
- W2009201116 hasConceptScore W2009201116C118615104 @default.
- W2009201116 hasConceptScore W2009201116C120047569 @default.
- W2009201116 hasConceptScore W2009201116C136119220 @default.
- W2009201116 hasConceptScore W2009201116C17744445 @default.
- W2009201116 hasConceptScore W2009201116C178790620 @default.
- W2009201116 hasConceptScore W2009201116C185592680 @default.
- W2009201116 hasConceptScore W2009201116C191413488 @default.
- W2009201116 hasConceptScore W2009201116C199539241 @default.
- W2009201116 hasConceptScore W2009201116C202444582 @default.
- W2009201116 hasConceptScore W2009201116C2776038885 @default.
- W2009201116 hasConceptScore W2009201116C2781311116 @default.
- W2009201116 hasConceptScore W2009201116C2781409172 @default.
- W2009201116 hasConceptScore W2009201116C31498916 @default.
- W2009201116 hasConceptScore W2009201116C33923547 @default.
- W2009201116 hasConceptScore W2009201116C58450382 @default.
- W2009201116 hasConceptScore W2009201116C94625758 @default.
- W2009201116 hasLocation W20092011161 @default.
- W2009201116 hasOpenAccess W2009201116 @default.
- W2009201116 hasPrimaryLocation W20092011161 @default.
- W2009201116 hasRelatedWork W1007036199 @default.
- W2009201116 hasRelatedWork W1496345528 @default.
- W2009201116 hasRelatedWork W1500478473 @default.
- W2009201116 hasRelatedWork W1596246684 @default.
- W2009201116 hasRelatedWork W1967319070 @default.
- W2009201116 hasRelatedWork W1975977829 @default.
- W2009201116 hasRelatedWork W1999634544 @default.
- W2009201116 hasRelatedWork W2005049949 @default.
- W2009201116 hasRelatedWork W2045923457 @default.
- W2009201116 hasRelatedWork W2083697392 @default.
- W2009201116 hasRelatedWork W2760717984 @default.
- W2009201116 hasRelatedWork W2779051573 @default.
- W2009201116 hasRelatedWork W2914027561 @default.
- W2009201116 hasRelatedWork W2942694706 @default.
- W2009201116 hasRelatedWork W2963041222 @default.
- W2009201116 hasRelatedWork W3016262477 @default.
- W2009201116 hasRelatedWork W3109194558 @default.
- W2009201116 hasRelatedWork W311363964 @default.
- W2009201116 hasRelatedWork W925895676 @default.
- W2009201116 hasRelatedWork W1965620957 @default.
- W2009201116 isParatext "false" @default.
- W2009201116 isRetracted "false" @default.
- W2009201116 magId "2009201116" @default.
- W2009201116 workType "article" @default.