Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009203414> ?p ?o ?g. }
- W2009203414 endingPage "155" @default.
- W2009203414 startingPage "153" @default.
- W2009203414 abstract "Activity-dependent synaptic plasticity is widely considered to be one of the cellular mechanisms that underlie learning and memory. Long-term potentiation (LTP) is the most intensely studied form of synaptic plasticity, in part because it can be induced at glutamatergic synapses in the mammalian brain, including the hippocampus, a structure known for its involvement in memory function. LTP can be divided into at least two phases, an early phase (E-LTP) and a late phase (L-LTP). There is a great deal known about the biochemical signal transduction cascades that underlie both E-LTP and L-LTP. However, comparatively little is known about the mechanisms by which prior activity may modulate synaptic plasticity, a phenomenon termed metaplasticity (Abraham and Bear 1996). In addition, it is not known whether there are differences in the metaplasticity of E-LTP and L-LTP. In this issue of Learning & Memory, Woo and Nguyen (2002) present the results of an elegant series of experiments that begin to address these questions. E-LTP is typically induced with one train of highfrequency stimulation (HFS) of 100 Hz and lasts 1–3 h, whereas L-LTP can be induced with multiple, spaced trains of 100 Hz HFS and persists for at least 24 h (for reviews, see Huang et al. 1996; Kandel 2001). The biochemical mechanisms supporting E-LTP and L-LTP have been extensively characterized. In hippocampal area CA1, both E-LTP and L-LTP are dependent on N-methyl-D-aspartate (NMDA) receptor activation, calcium influx into the postsynaptic neuron, and the activation of a number of protein kinase cascades. However, E-LTP and L-LTP can be distinguished from one another by several important criteria. The expression of L-LTP, but not E-LTP, requires activation of a cAMP-dependent protein kinase (PKA)/extracellular signal-regulated kinase (ERK) signaling cascade, transcription, and new protein synthesis (Huang et al. 1996; Kandel 2001). The delineation of the molecular mechanisms necessary for L-LTP has generated much excitement because very similar mechanisms appear to be necessary for the long-term storage of implicit memories (Kandel 2001). Metaplasticity is neither appreciated nor studied as intensely as LTP, but several forms of metaplasticity have been identified and described. For example, the induction of long-term depression (LTD) can be facilitated by previous periods of HFS (Christie and Abraham 1992), and the induction of LTP can be inhibited by previous periods of low-frequency stimulation (LFS; Christie and Abraham 1992; Huang et al. 1992). However, little is known about the biochemical signal transduction mechanisms that are involved in these forms of metaplasticity. The first question Woo and Nguyen (2002) addressed was whether an LFS protocol (5 Hz for 3 min), which had no effect on naive synapses, could affect subsequently induced E-LTP and L-LTP. To address this question, they delivered LFS, waited 7 min, and then induced either E-LTP or L-LTP. They observed that prior LFS had no effect on subsequently induced E-LTP. Surprisingly, they found that the same LFS protocol was able to completely block the expression of L-LTP. The inhibition of L-LTP by prior LFS was temporally limited because LFS could block subsequently induced L-LTP if the delay between LFS and the first train of HFS was 20 min, but not if the delay was 40 min. In addition, the authors also found that the LFS protocol could not reverse already established L-LTP. Taken together, these results indicate that prior synaptic activity differentially affects E-LTP and L-LTP and that the anterograde inhibition of L-LTP by prior synaptic activity is temporally restricted. The second critical question that Woo and Nguyen (2002) addressed was the biochemical signaling mechanisms responsible for this novel form of metaplasticity. It was previously shown that LFS-induced LTD, paired-pulse stimulation-induced LTD in vivo, and depotentiation of LTP all require NMDA receptor activation and protein phosphatase 1 (PP1) and/or protein phosphatase 2A (PP2A) activity (Mulkey et al. 1993; O’Dell and Kandel 1994; Thiels et al. 2000). Therefore, they asked whether the anterograde inhibition of L-LTP by prior LFS required NMDA receptor activation and/or PP1/PP2A activity. The authors found that NMDA receptor blockade prevented LFS from inhibiting the subsequent induction of L-LTP. In addition, Woo and Nguyen found that both okadaic acid and calyculin A, inhibitors of PP1/PP2A, also prevented LFS from inhibiting the subsequent induction of L-LTP. Collectively, these findings indicate that NMDA receptor activation during LFS is required to trigger a signaling cascade that includes PP1/ PP2A, which can subsequently prevent the expression of L-LTP. The findings of Woo and Nguyen indicate that protein phosphatases, which have been shown to play critical roles in the regulation of both LTP and LTD (Winder and Sweatt 2001), also play a critical role in a novel form of metaplasE-MAIL eklann@bcm.tmc.edu; FAX (713) 798-3475. Article and publication are at http://www.learnmem.org/cgi/doi/ 10.1101/lm.52802." @default.
- W2009203414 created "2016-06-24" @default.
- W2009203414 creator A5031323537 @default.
- W2009203414 date "2002-07-01" @default.
- W2009203414 modified "2023-09-24" @default.
- W2009203414 title "Metaplastic Protein Phosphatases" @default.
- W2009203414 cites W1502227906 @default.
- W2009203414 cites W1554441317 @default.
- W2009203414 cites W1598480035 @default.
- W2009203414 cites W1609834322 @default.
- W2009203414 cites W1633023755 @default.
- W2009203414 cites W164492255 @default.
- W2009203414 cites W1953411186 @default.
- W2009203414 cites W1964486755 @default.
- W2009203414 cites W1968054389 @default.
- W2009203414 cites W1972384396 @default.
- W2009203414 cites W1973627502 @default.
- W2009203414 cites W1979289355 @default.
- W2009203414 cites W1985405412 @default.
- W2009203414 cites W1986212704 @default.
- W2009203414 cites W1988181440 @default.
- W2009203414 cites W1989211372 @default.
- W2009203414 cites W1998173762 @default.
- W2009203414 cites W1998956680 @default.
- W2009203414 cites W1999576398 @default.
- W2009203414 cites W2001932673 @default.
- W2009203414 cites W2002927748 @default.
- W2009203414 cites W2005744880 @default.
- W2009203414 cites W2009782005 @default.
- W2009203414 cites W2011264238 @default.
- W2009203414 cites W2015592781 @default.
- W2009203414 cites W2017842551 @default.
- W2009203414 cites W2018408584 @default.
- W2009203414 cites W2018662966 @default.
- W2009203414 cites W2020869636 @default.
- W2009203414 cites W2025673185 @default.
- W2009203414 cites W2030134162 @default.
- W2009203414 cites W2032464991 @default.
- W2009203414 cites W2033897148 @default.
- W2009203414 cites W2036396876 @default.
- W2009203414 cites W2038022150 @default.
- W2009203414 cites W2042295311 @default.
- W2009203414 cites W2045441934 @default.
- W2009203414 cites W2046388858 @default.
- W2009203414 cites W2049134173 @default.
- W2009203414 cites W2049511526 @default.
- W2009203414 cites W2054077218 @default.
- W2009203414 cites W2062243367 @default.
- W2009203414 cites W2063055145 @default.
- W2009203414 cites W2079568611 @default.
- W2009203414 cites W2081524299 @default.
- W2009203414 cites W2089413793 @default.
- W2009203414 cites W2093906292 @default.
- W2009203414 cites W2094900302 @default.
- W2009203414 cites W2094976044 @default.
- W2009203414 cites W2095510381 @default.
- W2009203414 cites W2096081604 @default.
- W2009203414 cites W2102256305 @default.
- W2009203414 cites W2105857515 @default.
- W2009203414 cites W2112354679 @default.
- W2009203414 cites W2118977349 @default.
- W2009203414 cites W2123099861 @default.
- W2009203414 cites W2130784302 @default.
- W2009203414 cites W2133083344 @default.
- W2009203414 cites W2135557002 @default.
- W2009203414 cites W2137972183 @default.
- W2009203414 cites W2141949285 @default.
- W2009203414 cites W2144387894 @default.
- W2009203414 cites W2148389554 @default.
- W2009203414 cites W2153927373 @default.
- W2009203414 cites W2155681705 @default.
- W2009203414 cites W2162593608 @default.
- W2009203414 cites W2171784351 @default.
- W2009203414 cites W2341934249 @default.
- W2009203414 cites W2402814845 @default.
- W2009203414 doi "https://doi.org/10.1101/lm.52802" @default.
- W2009203414 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12177228" @default.
- W2009203414 hasPublicationYear "2002" @default.
- W2009203414 type Work @default.
- W2009203414 sameAs 2009203414 @default.
- W2009203414 citedByCount "8" @default.
- W2009203414 countsByYear W20092034142013 @default.
- W2009203414 countsByYear W20092034142016 @default.
- W2009203414 countsByYear W20092034142017 @default.
- W2009203414 countsByYear W20092034142018 @default.
- W2009203414 countsByYear W20092034142020 @default.
- W2009203414 crossrefType "journal-article" @default.
- W2009203414 hasAuthorship W2009203414A5031323537 @default.
- W2009203414 hasBestOaLocation W20092034141 @default.
- W2009203414 hasConcept C11960822 @default.
- W2009203414 hasConcept C178666793 @default.
- W2009203414 hasConcept C185592680 @default.
- W2009203414 hasConcept C55493867 @default.
- W2009203414 hasConceptScore W2009203414C11960822 @default.
- W2009203414 hasConceptScore W2009203414C178666793 @default.
- W2009203414 hasConceptScore W2009203414C185592680 @default.
- W2009203414 hasConceptScore W2009203414C55493867 @default.
- W2009203414 hasIssue "4" @default.