Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009238341> ?p ?o ?g. }
- W2009238341 endingPage "16" @default.
- W2009238341 startingPage "1" @default.
- W2009238341 abstract "Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies." @default.
- W2009238341 created "2016-06-24" @default.
- W2009238341 creator A5011875274 @default.
- W2009238341 creator A5032799897 @default.
- W2009238341 creator A5034895138 @default.
- W2009238341 creator A5035299098 @default.
- W2009238341 creator A5036957575 @default.
- W2009238341 creator A5059158029 @default.
- W2009238341 creator A5074408083 @default.
- W2009238341 date "2008-01-01" @default.
- W2009238341 modified "2023-09-24" @default.
- W2009238341 title "Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer" @default.
- W2009238341 cites W1965294423 @default.
- W2009238341 cites W1966482028 @default.
- W2009238341 cites W1966601749 @default.
- W2009238341 cites W1971438066 @default.
- W2009238341 cites W1972400640 @default.
- W2009238341 cites W1982494082 @default.
- W2009238341 cites W1983612538 @default.
- W2009238341 cites W1983667222 @default.
- W2009238341 cites W2000962237 @default.
- W2009238341 cites W2002090858 @default.
- W2009238341 cites W2033435016 @default.
- W2009238341 cites W2043166122 @default.
- W2009238341 cites W2043949137 @default.
- W2009238341 cites W2046833970 @default.
- W2009238341 cites W2063187855 @default.
- W2009238341 cites W2100884758 @default.
- W2009238341 cites W2142380524 @default.
- W2009238341 cites W2144464530 @default.
- W2009238341 cites W2152461666 @default.
- W2009238341 cites W4230869480 @default.
- W2009238341 doi "https://doi.org/10.1016/j.jconhyd.2007.07.005" @default.
- W2009238341 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17854950" @default.
- W2009238341 hasPublicationYear "2008" @default.
- W2009238341 type Work @default.
- W2009238341 sameAs 2009238341 @default.
- W2009238341 citedByCount "26" @default.
- W2009238341 countsByYear W20092383412012 @default.
- W2009238341 countsByYear W20092383412013 @default.
- W2009238341 countsByYear W20092383412014 @default.
- W2009238341 countsByYear W20092383412018 @default.
- W2009238341 countsByYear W20092383412019 @default.
- W2009238341 countsByYear W20092383412020 @default.
- W2009238341 countsByYear W20092383412021 @default.
- W2009238341 countsByYear W20092383412022 @default.
- W2009238341 crossrefType "journal-article" @default.
- W2009238341 hasAuthorship W2009238341A5011875274 @default.
- W2009238341 hasAuthorship W2009238341A5032799897 @default.
- W2009238341 hasAuthorship W2009238341A5034895138 @default.
- W2009238341 hasAuthorship W2009238341A5035299098 @default.
- W2009238341 hasAuthorship W2009238341A5036957575 @default.
- W2009238341 hasAuthorship W2009238341A5059158029 @default.
- W2009238341 hasAuthorship W2009238341A5074408083 @default.
- W2009238341 hasConcept C102579867 @default.
- W2009238341 hasConcept C107872376 @default.
- W2009238341 hasConcept C111368507 @default.
- W2009238341 hasConcept C114793014 @default.
- W2009238341 hasConcept C121332964 @default.
- W2009238341 hasConcept C122846477 @default.
- W2009238341 hasConcept C127313418 @default.
- W2009238341 hasConcept C153400128 @default.
- W2009238341 hasConcept C159390177 @default.
- W2009238341 hasConcept C174091901 @default.
- W2009238341 hasConcept C185592680 @default.
- W2009238341 hasConcept C187320778 @default.
- W2009238341 hasConcept C2816523 @default.
- W2009238341 hasConcept C39432304 @default.
- W2009238341 hasConcept C69823785 @default.
- W2009238341 hasConcept C7012322 @default.
- W2009238341 hasConcept C75622301 @default.
- W2009238341 hasConcept C76177295 @default.
- W2009238341 hasConcept C76886044 @default.
- W2009238341 hasConcept C87717796 @default.
- W2009238341 hasConcept C94061648 @default.
- W2009238341 hasConcept C97355855 @default.
- W2009238341 hasConceptScore W2009238341C102579867 @default.
- W2009238341 hasConceptScore W2009238341C107872376 @default.
- W2009238341 hasConceptScore W2009238341C111368507 @default.
- W2009238341 hasConceptScore W2009238341C114793014 @default.
- W2009238341 hasConceptScore W2009238341C121332964 @default.
- W2009238341 hasConceptScore W2009238341C122846477 @default.
- W2009238341 hasConceptScore W2009238341C127313418 @default.
- W2009238341 hasConceptScore W2009238341C153400128 @default.
- W2009238341 hasConceptScore W2009238341C159390177 @default.
- W2009238341 hasConceptScore W2009238341C174091901 @default.
- W2009238341 hasConceptScore W2009238341C185592680 @default.
- W2009238341 hasConceptScore W2009238341C187320778 @default.
- W2009238341 hasConceptScore W2009238341C2816523 @default.
- W2009238341 hasConceptScore W2009238341C39432304 @default.
- W2009238341 hasConceptScore W2009238341C69823785 @default.
- W2009238341 hasConceptScore W2009238341C7012322 @default.
- W2009238341 hasConceptScore W2009238341C75622301 @default.
- W2009238341 hasConceptScore W2009238341C76177295 @default.
- W2009238341 hasConceptScore W2009238341C76886044 @default.
- W2009238341 hasConceptScore W2009238341C87717796 @default.
- W2009238341 hasConceptScore W2009238341C94061648 @default.
- W2009238341 hasConceptScore W2009238341C97355855 @default.