Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009269605> ?p ?o ?g. }
- W2009269605 endingPage "1715" @default.
- W2009269605 startingPage "1697" @default.
- W2009269605 abstract "One common problem with geographic data is that, for a specific geographic event, only occurrence information is available; information about the absence of the event is not available. We refer to these specific types of geospatial data as geographic one-class data (GOCD). Predicting the potential spatial distributions that a particular geographic event may occur from GOCD is difficult because traditional binary classification methods that require availability of both positive and negative training samples cannot be used. The objective of this research is to define GOCD and propose novel approaches for modelling potential spatial distributions of geographic events using GOCD. We investigate the effectiveness of one-class support vector machine (OCSVM), maximum entropy (MAXENT) and the newly proposed positive and unlabelled learning (PUL) algorithm for solving GOCD problems using a case study: species distribution modelling from synthetic data. Our experimental results indicate that generally OCSVM, MAXENT and PUL are effective in modelling the GOCD. Each method has advantages and disadvantages, but PUL seems to be the most promising method." @default.
- W2009269605 created "2016-06-24" @default.
- W2009269605 creator A5014968449 @default.
- W2009269605 creator A5018073672 @default.
- W2009269605 creator A5036663230 @default.
- W2009269605 creator A5045506481 @default.
- W2009269605 date "2011-10-01" @default.
- W2009269605 modified "2023-10-16" @default.
- W2009269605 title "Predicting potential distributions of geographic events using one-class data: concepts and methods" @default.
- W2009269605 cites W1528099559 @default.
- W2009269605 cites W1557074680 @default.
- W2009269605 cites W1838542636 @default.
- W2009269605 cites W1980501707 @default.
- W2009269605 cites W1986643700 @default.
- W2009269605 cites W1996903695 @default.
- W2009269605 cites W1997281130 @default.
- W2009269605 cites W2002758482 @default.
- W2009269605 cites W2012735201 @default.
- W2009269605 cites W2022962792 @default.
- W2009269605 cites W2031410081 @default.
- W2009269605 cites W2032558547 @default.
- W2009269605 cites W2035791470 @default.
- W2009269605 cites W2038393238 @default.
- W2009269605 cites W2046084401 @default.
- W2009269605 cites W2066621708 @default.
- W2009269605 cites W2077164931 @default.
- W2009269605 cites W2087556827 @default.
- W2009269605 cites W2100294832 @default.
- W2009269605 cites W2107108409 @default.
- W2009269605 cites W2107157233 @default.
- W2009269605 cites W2108693588 @default.
- W2009269605 cites W2109113184 @default.
- W2009269605 cites W2112315008 @default.
- W2009269605 cites W2114630657 @default.
- W2009269605 cites W2114828048 @default.
- W2009269605 cites W2119202692 @default.
- W2009269605 cites W2123337039 @default.
- W2009269605 cites W2123958887 @default.
- W2009269605 cites W2131775048 @default.
- W2009269605 cites W2132870739 @default.
- W2009269605 cites W2139122730 @default.
- W2009269605 cites W2139416101 @default.
- W2009269605 cites W2139853639 @default.
- W2009269605 cites W2140890695 @default.
- W2009269605 cites W2147280166 @default.
- W2009269605 cites W2160842254 @default.
- W2009269605 cites W2162467623 @default.
- W2009269605 cites W2163816695 @default.
- W2009269605 cites W2993383518 @default.
- W2009269605 cites W4233477958 @default.
- W2009269605 cites W4235764643 @default.
- W2009269605 doi "https://doi.org/10.1080/13658816.2010.546360" @default.
- W2009269605 hasPublicationYear "2011" @default.
- W2009269605 type Work @default.
- W2009269605 sameAs 2009269605 @default.
- W2009269605 citedByCount "18" @default.
- W2009269605 countsByYear W20092696052012 @default.
- W2009269605 countsByYear W20092696052013 @default.
- W2009269605 countsByYear W20092696052014 @default.
- W2009269605 countsByYear W20092696052015 @default.
- W2009269605 countsByYear W20092696052017 @default.
- W2009269605 countsByYear W20092696052018 @default.
- W2009269605 countsByYear W20092696052019 @default.
- W2009269605 countsByYear W20092696052021 @default.
- W2009269605 countsByYear W20092696052022 @default.
- W2009269605 countsByYear W20092696052023 @default.
- W2009269605 crossrefType "journal-article" @default.
- W2009269605 hasAuthorship W2009269605A5014968449 @default.
- W2009269605 hasAuthorship W2009269605A5018073672 @default.
- W2009269605 hasAuthorship W2009269605A5036663230 @default.
- W2009269605 hasAuthorship W2009269605A5045506481 @default.
- W2009269605 hasConcept C106301342 @default.
- W2009269605 hasConcept C119857082 @default.
- W2009269605 hasConcept C121332964 @default.
- W2009269605 hasConcept C12267149 @default.
- W2009269605 hasConcept C124101348 @default.
- W2009269605 hasConcept C154945302 @default.
- W2009269605 hasConcept C159620131 @default.
- W2009269605 hasConcept C205649164 @default.
- W2009269605 hasConcept C2777212361 @default.
- W2009269605 hasConcept C2779662365 @default.
- W2009269605 hasConcept C41008148 @default.
- W2009269605 hasConcept C41856607 @default.
- W2009269605 hasConcept C58640448 @default.
- W2009269605 hasConcept C62520636 @default.
- W2009269605 hasConcept C62649853 @default.
- W2009269605 hasConcept C66905080 @default.
- W2009269605 hasConcept C9679016 @default.
- W2009269605 hasConcept C9770341 @default.
- W2009269605 hasConceptScore W2009269605C106301342 @default.
- W2009269605 hasConceptScore W2009269605C119857082 @default.
- W2009269605 hasConceptScore W2009269605C121332964 @default.
- W2009269605 hasConceptScore W2009269605C12267149 @default.
- W2009269605 hasConceptScore W2009269605C124101348 @default.
- W2009269605 hasConceptScore W2009269605C154945302 @default.
- W2009269605 hasConceptScore W2009269605C159620131 @default.
- W2009269605 hasConceptScore W2009269605C205649164 @default.
- W2009269605 hasConceptScore W2009269605C2777212361 @default.