Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009295660> ?p ?o ?g. }
- W2009295660 endingPage "1059" @default.
- W2009295660 startingPage "1050" @default.
- W2009295660 abstract "A model for predicting heat transfer during condensation of refrigerant R134a in horizontal microchannels is presented. The thermal amplification technique is used to measure condensation heat transfer coefficients accurately over small increments of refrigerant quality across the vapor-liquid dome (0<x<1). A combination of a high flow rate closed loop primary coolant and a low flow rate open loop secondary coolant ensures the accurate measurement of the small heat duties in these microchannels and the deduction of condensation heat transfer coefficients from measured UA values. Measurements were conducted for three circular microchannels (0.506<Dh<1.524mm) over the mass flux range 150<G<750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to interpret the results based on the applicable flow regimes. The heat transfer model is based on the approach originally developed by Traviss, D. P., Rohsenow, W. M., and Baron, A. B., 1973, “Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design,” ASHRAE Trans., 79(1), pp. 157–165 and Moser, K. W., Webb, R. L., and Na, B., 1998, “A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes,” ASME, J. Heat Transfer, 120(2), pp. 410–417. The multiple-flow-regime model of Garimella, S., Agarwal, A., and Killion, J. D., 2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3), pp. 1–8 for predicting condensation pressure drops in microchannels is used to predict the pertinent interfacial shear stresses required in this heat transfer model. The resulting heat transfer model predicts 86% of the data within ±20%." @default.
- W2009295660 created "2016-06-24" @default.
- W2009295660 creator A5067782657 @default.
- W2009295660 creator A5071140673 @default.
- W2009295660 creator A5086155535 @default.
- W2009295660 date "2006-03-07" @default.
- W2009295660 modified "2023-10-08" @default.
- W2009295660 title "Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels" @default.
- W2009295660 cites W1965704150 @default.
- W2009295660 cites W1968040622 @default.
- W2009295660 cites W1968690031 @default.
- W2009295660 cites W1969279590 @default.
- W2009295660 cites W1973207823 @default.
- W2009295660 cites W1977056671 @default.
- W2009295660 cites W1978294611 @default.
- W2009295660 cites W1987775737 @default.
- W2009295660 cites W1994179207 @default.
- W2009295660 cites W2009319608 @default.
- W2009295660 cites W2021848012 @default.
- W2009295660 cites W2028054284 @default.
- W2009295660 cites W2028683695 @default.
- W2009295660 cites W2031157964 @default.
- W2009295660 cites W2036216572 @default.
- W2009295660 cites W2039772254 @default.
- W2009295660 cites W2056320887 @default.
- W2009295660 cites W2056778041 @default.
- W2009295660 cites W2056913828 @default.
- W2009295660 cites W2056998249 @default.
- W2009295660 cites W2061253825 @default.
- W2009295660 cites W2064180392 @default.
- W2009295660 cites W2066063988 @default.
- W2009295660 cites W2073899687 @default.
- W2009295660 cites W2075592407 @default.
- W2009295660 cites W2086823641 @default.
- W2009295660 cites W2092818236 @default.
- W2009295660 cites W2101798836 @default.
- W2009295660 cites W2111895373 @default.
- W2009295660 cites W2119008532 @default.
- W2009295660 cites W2120043625 @default.
- W2009295660 cites W2168942256 @default.
- W2009295660 cites W2171197679 @default.
- W2009295660 cites W2210760631 @default.
- W2009295660 cites W2324265119 @default.
- W2009295660 cites W3213263400 @default.
- W2009295660 cites W4236276703 @default.
- W2009295660 doi "https://doi.org/10.1115/1.2345427" @default.
- W2009295660 hasPublicationYear "2006" @default.
- W2009295660 type Work @default.
- W2009295660 sameAs 2009295660 @default.
- W2009295660 citedByCount "177" @default.
- W2009295660 countsByYear W20092956602012 @default.
- W2009295660 countsByYear W20092956602013 @default.
- W2009295660 countsByYear W20092956602014 @default.
- W2009295660 countsByYear W20092956602015 @default.
- W2009295660 countsByYear W20092956602016 @default.
- W2009295660 countsByYear W20092956602017 @default.
- W2009295660 countsByYear W20092956602018 @default.
- W2009295660 countsByYear W20092956602019 @default.
- W2009295660 countsByYear W20092956602020 @default.
- W2009295660 countsByYear W20092956602021 @default.
- W2009295660 countsByYear W20092956602022 @default.
- W2009295660 countsByYear W20092956602023 @default.
- W2009295660 crossrefType "journal-article" @default.
- W2009295660 hasAuthorship W2009295660A5067782657 @default.
- W2009295660 hasAuthorship W2009295660A5071140673 @default.
- W2009295660 hasAuthorship W2009295660A5086155535 @default.
- W2009295660 hasConcept C107706546 @default.
- W2009295660 hasConcept C114088122 @default.
- W2009295660 hasConcept C120665830 @default.
- W2009295660 hasConcept C121332964 @default.
- W2009295660 hasConcept C159188206 @default.
- W2009295660 hasConcept C182748727 @default.
- W2009295660 hasConcept C185592680 @default.
- W2009295660 hasConcept C192562407 @default.
- W2009295660 hasConcept C196558001 @default.
- W2009295660 hasConcept C199499590 @default.
- W2009295660 hasConcept C200093464 @default.
- W2009295660 hasConcept C2780934509 @default.
- W2009295660 hasConcept C29700514 @default.
- W2009295660 hasConcept C2982854487 @default.
- W2009295660 hasConcept C41231900 @default.
- W2009295660 hasConcept C50517652 @default.
- W2009295660 hasConcept C57879066 @default.
- W2009295660 hasConcept C63662833 @default.
- W2009295660 hasConcept C91914117 @default.
- W2009295660 hasConcept C97355855 @default.
- W2009295660 hasConceptScore W2009295660C107706546 @default.
- W2009295660 hasConceptScore W2009295660C114088122 @default.
- W2009295660 hasConceptScore W2009295660C120665830 @default.
- W2009295660 hasConceptScore W2009295660C121332964 @default.
- W2009295660 hasConceptScore W2009295660C159188206 @default.
- W2009295660 hasConceptScore W2009295660C182748727 @default.
- W2009295660 hasConceptScore W2009295660C185592680 @default.
- W2009295660 hasConceptScore W2009295660C192562407 @default.
- W2009295660 hasConceptScore W2009295660C196558001 @default.
- W2009295660 hasConceptScore W2009295660C199499590 @default.
- W2009295660 hasConceptScore W2009295660C200093464 @default.
- W2009295660 hasConceptScore W2009295660C2780934509 @default.