Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009302244> ?p ?o ?g. }
- W2009302244 endingPage "20109" @default.
- W2009302244 startingPage "20100" @default.
- W2009302244 abstract "The biological formation of inorganic materials (biomineralization) often occurs in specialized intracellular vesicles. Prominent examples are diatoms, a group of single-celled eukaryotic microalgae that produce their SiO2 (silica)-based cell walls within intracellular silica deposition vesicles (SDVs). SDVs contain protein-based organic matrices that control silica formation, resulting in species specifically nanopatterned biosilica, an organic-inorganic composite material. So far no information is available regarding the molecular mechanisms of SDV biogenesis. Here we have investigated by fluorescence microscopy and subcellular membrane fractionation the intracellular transport of silaffin Sil3. Silaffins are a group of phosphoproteins constituting the main components of the organic matrix of diatom biosilica. We demonstrate that the N-terminal signal peptide of Sil3 mediates import into a specific subregion of the endoplasmic reticulum. Additional segments from the mature part of Sil3 are required to reach post-endoplasmic reticulum compartments. Further transport of Sil3 and incorporation into the biosilica (silica targeting) require protein segments that contain a high density of modified lysine residues and phosphoserines. Silica targeting of Sil3 is not dependent on a particular peptide sequence, yet a lysine-rich 12–14-amino acid peptide motif (pentalysine cluster), which is conserved in all silaffins, strongly promotes silica targeting. The results of the present work provide the first insight into the molecular mechanisms for biogenesis of mineral-forming vesicles from an eukaryotic organism.Background: Morphogenesis of diatom biosilica depends on a silaffin-dependent organic matrix inside intracellular vesicles (SDVs).Results: Silaffin-derived 12–14-mer peptides containing five modified lysines and several phosphoserines (pentalysine clusters) are sufficient for silica targeting in vivo.Conclusion: Pentalysine clusters function as address tags for SDV targeting of silaffins.Significance: Elucidating the molecular mechanisms for biogenesis of mineral-forming vesicles is essential for understanding biomineral morphogenesis. The biological formation of inorganic materials (biomineralization) often occurs in specialized intracellular vesicles. Prominent examples are diatoms, a group of single-celled eukaryotic microalgae that produce their SiO2 (silica)-based cell walls within intracellular silica deposition vesicles (SDVs). SDVs contain protein-based organic matrices that control silica formation, resulting in species specifically nanopatterned biosilica, an organic-inorganic composite material. So far no information is available regarding the molecular mechanisms of SDV biogenesis. Here we have investigated by fluorescence microscopy and subcellular membrane fractionation the intracellular transport of silaffin Sil3. Silaffins are a group of phosphoproteins constituting the main components of the organic matrix of diatom biosilica. We demonstrate that the N-terminal signal peptide of Sil3 mediates import into a specific subregion of the endoplasmic reticulum. Additional segments from the mature part of Sil3 are required to reach post-endoplasmic reticulum compartments. Further transport of Sil3 and incorporation into the biosilica (silica targeting) require protein segments that contain a high density of modified lysine residues and phosphoserines. Silica targeting of Sil3 is not dependent on a particular peptide sequence, yet a lysine-rich 12–14-amino acid peptide motif (pentalysine cluster), which is conserved in all silaffins, strongly promotes silica targeting. The results of the present work provide the first insight into the molecular mechanisms for biogenesis of mineral-forming vesicles from an eukaryotic organism. Background: Morphogenesis of diatom biosilica depends on a silaffin-dependent organic matrix inside intracellular vesicles (SDVs). Results: Silaffin-derived 12–14-mer peptides containing five modified lysines and several phosphoserines (pentalysine clusters) are sufficient for silica targeting in vivo. Conclusion: Pentalysine clusters function as address tags for SDV targeting of silaffins. Significance: Elucidating the molecular mechanisms for biogenesis of mineral-forming vesicles is essential for understanding biomineral morphogenesis. Molecular Mechanism for Biomineralization in a Eukaryotic Single-celled Organism♦: Pentalysine Clusters Mediate Silica Targeting of Silaffins in Journal of Biological ChemistryVol. 288Issue 28Preview♦ See referenced article, J. Biol. Chem. 2013, 288, 20100–20109 Full-Text PDF Open Access" @default.
- W2009302244 created "2016-06-24" @default.
- W2009302244 creator A5050778140 @default.
- W2009302244 creator A5052620169 @default.
- W2009302244 creator A5053873759 @default.
- W2009302244 creator A5060593163 @default.
- W2009302244 creator A5064505042 @default.
- W2009302244 date "2013-07-01" @default.
- W2009302244 modified "2023-10-16" @default.
- W2009302244 title "Pentalysine Clusters Mediate Silica Targeting of Silaffins in Thalassiosira pseudonana" @default.
- W2009302244 cites W1496906569 @default.
- W2009302244 cites W1546912796 @default.
- W2009302244 cites W1967260122 @default.
- W2009302244 cites W1977317796 @default.
- W2009302244 cites W1979637090 @default.
- W2009302244 cites W1990801486 @default.
- W2009302244 cites W1996239276 @default.
- W2009302244 cites W1999786853 @default.
- W2009302244 cites W2003721128 @default.
- W2009302244 cites W2003838868 @default.
- W2009302244 cites W2007882428 @default.
- W2009302244 cites W2009399134 @default.
- W2009302244 cites W2017684289 @default.
- W2009302244 cites W2029317255 @default.
- W2009302244 cites W2038443145 @default.
- W2009302244 cites W2039172353 @default.
- W2009302244 cites W2048445840 @default.
- W2009302244 cites W2051266025 @default.
- W2009302244 cites W2051719256 @default.
- W2009302244 cites W2057315336 @default.
- W2009302244 cites W2063882860 @default.
- W2009302244 cites W2069291325 @default.
- W2009302244 cites W2074953517 @default.
- W2009302244 cites W2075504536 @default.
- W2009302244 cites W2083129881 @default.
- W2009302244 cites W2088366997 @default.
- W2009302244 cites W2095376066 @default.
- W2009302244 cites W2100479677 @default.
- W2009302244 cites W2106329277 @default.
- W2009302244 cites W2109046272 @default.
- W2009302244 cites W2111429500 @default.
- W2009302244 cites W2112370094 @default.
- W2009302244 cites W2114093224 @default.
- W2009302244 cites W2122680289 @default.
- W2009302244 cites W2133471309 @default.
- W2009302244 cites W4235079115 @default.
- W2009302244 cites W4237069704 @default.
- W2009302244 cites W4362025018 @default.
- W2009302244 doi "https://doi.org/10.1074/jbc.m113.469379" @default.
- W2009302244 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3711277" @default.
- W2009302244 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23720751" @default.
- W2009302244 hasPublicationYear "2013" @default.
- W2009302244 type Work @default.
- W2009302244 sameAs 2009302244 @default.
- W2009302244 citedByCount "55" @default.
- W2009302244 countsByYear W20093022442014 @default.
- W2009302244 countsByYear W20093022442015 @default.
- W2009302244 countsByYear W20093022442016 @default.
- W2009302244 countsByYear W20093022442017 @default.
- W2009302244 countsByYear W20093022442018 @default.
- W2009302244 countsByYear W20093022442019 @default.
- W2009302244 countsByYear W20093022442020 @default.
- W2009302244 countsByYear W20093022442021 @default.
- W2009302244 countsByYear W20093022442022 @default.
- W2009302244 countsByYear W20093022442023 @default.
- W2009302244 crossrefType "journal-article" @default.
- W2009302244 hasAuthorship W2009302244A5050778140 @default.
- W2009302244 hasAuthorship W2009302244A5052620169 @default.
- W2009302244 hasAuthorship W2009302244A5053873759 @default.
- W2009302244 hasAuthorship W2009302244A5060593163 @default.
- W2009302244 hasAuthorship W2009302244A5064505042 @default.
- W2009302244 hasBestOaLocation W20093022441 @default.
- W2009302244 hasConcept C104317684 @default.
- W2009302244 hasConcept C10858879 @default.
- W2009302244 hasConcept C12554922 @default.
- W2009302244 hasConcept C130316041 @default.
- W2009302244 hasConcept C131934819 @default.
- W2009302244 hasConcept C142796444 @default.
- W2009302244 hasConcept C151730666 @default.
- W2009302244 hasConcept C158617107 @default.
- W2009302244 hasConcept C167625842 @default.
- W2009302244 hasConcept C178790620 @default.
- W2009302244 hasConcept C183586093 @default.
- W2009302244 hasConcept C185592680 @default.
- W2009302244 hasConcept C2776016237 @default.
- W2009302244 hasConcept C2777082925 @default.
- W2009302244 hasConcept C2778902744 @default.
- W2009302244 hasConcept C2779281246 @default.
- W2009302244 hasConcept C2780892065 @default.
- W2009302244 hasConcept C41625074 @default.
- W2009302244 hasConcept C515207424 @default.
- W2009302244 hasConcept C55493867 @default.
- W2009302244 hasConcept C59822182 @default.
- W2009302244 hasConcept C79879829 @default.
- W2009302244 hasConcept C86803240 @default.
- W2009302244 hasConcept C95444343 @default.
- W2009302244 hasConceptScore W2009302244C104317684 @default.
- W2009302244 hasConceptScore W2009302244C10858879 @default.