Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009349212> ?p ?o ?g. }
- W2009349212 endingPage "207" @default.
- W2009349212 startingPage "194" @default.
- W2009349212 abstract "A 2-D numerical study was carried out, using a fully coupled rock deformation and fluid flow hydraulic fracturing model on fracture network formation in a low-permeability naturally fractured rock, in which new fractures are allowed to nucleate and grow driven by overpressurized fluid. Fracture seeds either are defined as small flaws or are nucleated based on a stress and fracture energy criterion. Fracture intersection, fluid flow and frictional slip along fractures are also explicitly simulated in the model. In particular, we consider a few artificial fracture network geometries with sets of finite discrete or isolated fractures in order to study the roles of fluid viscosity, injection conditions, fracture intersections and offsetting at pre-existing or natural fractures in determining the paths which hydraulic fractures follow through the network. The newly fluid-created fracture segments, which are oriented locally normal to the least compressive stress, are the most conductive parts along the hydraulic fracture path. The resulting network will allow for long-term fluid flow to occur more easily provided that these segments retain their conductivity. However, the existence of intersections and offsets in the main fracture path act to impede fracture growth and fluid flow. A fracture nucleation event associated with higher fluid pressure may allow a fracture path to bypass these barriers, thus leading to a more planar fracture geometry. If fracture nucleation does not occur, fluid may enter other cross cutting natural fractures or enter along a barrier fracture to the tip of the barrier fracture, both processes that require a larger expenditure of energy reflected in an increasing fluid pressure. The results clearly demonstrate the importance of these stress and flow barriers in forming a preferential fracture and flow path. Fluid invasion into and fracture growth of natural fractures can still continue to occur at the high pressure region near the hydraulic fracture entry, even after a complete hydraulic fracture pathway has developed, showing strong similarity to the invasion percolation process. In contrast to fixed-aperture, connected fracture network models, the fracture growth-generated patterns also depend on the in situ stresses, which affect mechanical interaction between the main hydraulic fracture and natural fractures. The numerical results provide improved understanding of fluid-driven fracture growth into and through a network of pre-existing natural fractures." @default.
- W2009349212 created "2016-06-24" @default.
- W2009349212 creator A5013318766 @default.
- W2009349212 creator A5018559436 @default.
- W2009349212 date "2014-09-01" @default.
- W2009349212 modified "2023-10-07" @default.
- W2009349212 title "Role of overpressurized fluid and fluid-driven fractures in forming fracture networks" @default.
- W2009349212 cites W1658104559 @default.
- W2009349212 cites W1967736980 @default.
- W2009349212 cites W1968595305 @default.
- W2009349212 cites W1977428117 @default.
- W2009349212 cites W1977592845 @default.
- W2009349212 cites W1977790072 @default.
- W2009349212 cites W1979085015 @default.
- W2009349212 cites W1980051745 @default.
- W2009349212 cites W1997930686 @default.
- W2009349212 cites W1999458950 @default.
- W2009349212 cites W2001785787 @default.
- W2009349212 cites W2004915799 @default.
- W2009349212 cites W2008981917 @default.
- W2009349212 cites W2013488767 @default.
- W2009349212 cites W2022810219 @default.
- W2009349212 cites W2024657179 @default.
- W2009349212 cites W2040846183 @default.
- W2009349212 cites W2043408739 @default.
- W2009349212 cites W2044751804 @default.
- W2009349212 cites W2046401714 @default.
- W2009349212 cites W2048620508 @default.
- W2009349212 cites W2055867851 @default.
- W2009349212 cites W2061762240 @default.
- W2009349212 cites W2070974773 @default.
- W2009349212 cites W2072086953 @default.
- W2009349212 cites W2075026394 @default.
- W2009349212 cites W2080238745 @default.
- W2009349212 cites W2082503107 @default.
- W2009349212 cites W2086072411 @default.
- W2009349212 cites W2087018845 @default.
- W2009349212 cites W2089842742 @default.
- W2009349212 cites W2091743083 @default.
- W2009349212 cites W2117311266 @default.
- W2009349212 cites W2128361235 @default.
- W2009349212 cites W2129596536 @default.
- W2009349212 cites W2132895006 @default.
- W2009349212 cites W2141885723 @default.
- W2009349212 cites W2142268580 @default.
- W2009349212 cites W2144504391 @default.
- W2009349212 cites W2152724920 @default.
- W2009349212 doi "https://doi.org/10.1016/j.gexplo.2014.03.021" @default.
- W2009349212 hasPublicationYear "2014" @default.
- W2009349212 type Work @default.
- W2009349212 sameAs 2009349212 @default.
- W2009349212 citedByCount "41" @default.
- W2009349212 countsByYear W20093492122014 @default.
- W2009349212 countsByYear W20093492122015 @default.
- W2009349212 countsByYear W20093492122016 @default.
- W2009349212 countsByYear W20093492122017 @default.
- W2009349212 countsByYear W20093492122018 @default.
- W2009349212 countsByYear W20093492122019 @default.
- W2009349212 countsByYear W20093492122020 @default.
- W2009349212 countsByYear W20093492122021 @default.
- W2009349212 countsByYear W20093492122022 @default.
- W2009349212 countsByYear W20093492122023 @default.
- W2009349212 crossrefType "journal-article" @default.
- W2009349212 hasAuthorship W2009349212A5013318766 @default.
- W2009349212 hasAuthorship W2009349212A5018559436 @default.
- W2009349212 hasConcept C120882062 @default.
- W2009349212 hasConcept C121332964 @default.
- W2009349212 hasConcept C127313418 @default.
- W2009349212 hasConcept C127413603 @default.
- W2009349212 hasConcept C146978453 @default.
- W2009349212 hasConcept C185592680 @default.
- W2009349212 hasConcept C187320778 @default.
- W2009349212 hasConcept C191236761 @default.
- W2009349212 hasConcept C195268267 @default.
- W2009349212 hasConcept C2777447996 @default.
- W2009349212 hasConcept C2779096232 @default.
- W2009349212 hasConcept C41625074 @default.
- W2009349212 hasConcept C43369102 @default.
- W2009349212 hasConcept C55493867 @default.
- W2009349212 hasConcept C57879066 @default.
- W2009349212 hasConcept C90278072 @default.
- W2009349212 hasConceptScore W2009349212C120882062 @default.
- W2009349212 hasConceptScore W2009349212C121332964 @default.
- W2009349212 hasConceptScore W2009349212C127313418 @default.
- W2009349212 hasConceptScore W2009349212C127413603 @default.
- W2009349212 hasConceptScore W2009349212C146978453 @default.
- W2009349212 hasConceptScore W2009349212C185592680 @default.
- W2009349212 hasConceptScore W2009349212C187320778 @default.
- W2009349212 hasConceptScore W2009349212C191236761 @default.
- W2009349212 hasConceptScore W2009349212C195268267 @default.
- W2009349212 hasConceptScore W2009349212C2777447996 @default.
- W2009349212 hasConceptScore W2009349212C2779096232 @default.
- W2009349212 hasConceptScore W2009349212C41625074 @default.
- W2009349212 hasConceptScore W2009349212C43369102 @default.
- W2009349212 hasConceptScore W2009349212C55493867 @default.
- W2009349212 hasConceptScore W2009349212C57879066 @default.
- W2009349212 hasConceptScore W2009349212C90278072 @default.
- W2009349212 hasLocation W20093492121 @default.