Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009365344> ?p ?o ?g. }
- W2009365344 endingPage "30" @default.
- W2009365344 startingPage "17" @default.
- W2009365344 abstract "Jet A POSF 4658 and n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethylbenzene (2nd generation surrogate) oxidation experiments were conducted in a shock tube at high pressures and at fuel lean and rich conditions to verify if the formulated surrogate fuel emulates the combustion characteristics of the jet fuel. A model was developed for the 2nd generation surrogate using an existing 1st generation surrogate model (consisting of n-decane/iso-octane/toluene) as the base model and sub-models for n-propylbenzene and 1,3,5-trimethylbenzene were included from the literature. The experimental work on both the Jet A and 2nd generation surrogate was performed in a heated high-pressure single pulse shock tube at equivalence ratios of 0.46, 1.86 and 0.47, 1.85, respectively. Experimental data were obtained over the temperature range of 879–1733 K, a pressure range of 16–27 atm, and reaction times from 1.34 to 3.36 ms. The mole fractions of the stable species were determined using gas chromatography and mass spectroscopy. Comparing the Jet A and the 2nd generation surrogate experiments showed that the surrogate fuel emulates the decay of O2, and the formation of CO, CO2, and C1–C3 intermediate species within experimental errors. The modeling results of the 2nd generation surrogate model compared against the experimental data showed good agreement with the mole fractions of CO, CO2, C1–C3 intermediate species and the decay of the surrogate fuel and oxygen. Comparison of the modeling results for O2 decay to the 2nd generation surrogate experiments and pure 1,3,5-trimethylbenzene oxidation experiments revealed that the surrogate fuel model is capable of predicting O2 decay with a greater degree of accuracy in the 2nd generation surrogate experiments than in that of pure 1,3,5-trimethylbenzene experiments. This suggests that the radical pool formed due to the non-aromatics species during the consumption of 2nd generation surrogate fuel components prior to the formation of CO and CO2 could contribute to the initial decay of O2 at lower temperatures and thereby results in better prediction by the model, which includes both non-aromatics and aromatics chemistry, of O2 decay and formation of CO and CO2. Flow reactor simulations of the 2nd generation surrogate fuel experiments showed the surrogate model captures the overall trends of the decay of O2 and the formation of CO, CO2, and H2O. Additionally, simulated shock tube ignition delay times above 750 K were within a factor of two when compared to experimental ignition delay times." @default.
- W2009365344 created "2016-06-24" @default.
- W2009365344 creator A5042124154 @default.
- W2009365344 creator A5044532625 @default.
- W2009365344 creator A5063100344 @default.
- W2009365344 date "2013-01-01" @default.
- W2009365344 modified "2023-10-16" @default.
- W2009365344 title "Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethylbenzene surrogate fuel" @default.
- W2009365344 cites W1973085334 @default.
- W2009365344 cites W1974845018 @default.
- W2009365344 cites W1981621270 @default.
- W2009365344 cites W1983347298 @default.
- W2009365344 cites W1989709832 @default.
- W2009365344 cites W1989977229 @default.
- W2009365344 cites W1991824412 @default.
- W2009365344 cites W1992480510 @default.
- W2009365344 cites W1992934167 @default.
- W2009365344 cites W2002820367 @default.
- W2009365344 cites W2004208261 @default.
- W2009365344 cites W2007920233 @default.
- W2009365344 cites W2013840038 @default.
- W2009365344 cites W2014524646 @default.
- W2009365344 cites W2019864946 @default.
- W2009365344 cites W2021278724 @default.
- W2009365344 cites W2030125367 @default.
- W2009365344 cites W2031737292 @default.
- W2009365344 cites W2032478910 @default.
- W2009365344 cites W2034860155 @default.
- W2009365344 cites W2036235790 @default.
- W2009365344 cites W2043717641 @default.
- W2009365344 cites W2046017229 @default.
- W2009365344 cites W2046033679 @default.
- W2009365344 cites W2050615376 @default.
- W2009365344 cites W2054713895 @default.
- W2009365344 cites W2055504971 @default.
- W2009365344 cites W2060279407 @default.
- W2009365344 cites W2065600679 @default.
- W2009365344 cites W2067193710 @default.
- W2009365344 cites W2067809794 @default.
- W2009365344 cites W2068299752 @default.
- W2009365344 cites W2070029317 @default.
- W2009365344 cites W2076661340 @default.
- W2009365344 cites W2077181028 @default.
- W2009365344 cites W2080665945 @default.
- W2009365344 cites W2081707730 @default.
- W2009365344 cites W2089936292 @default.
- W2009365344 cites W2128298235 @default.
- W2009365344 cites W2146199590 @default.
- W2009365344 cites W2315099111 @default.
- W2009365344 cites W2335583355 @default.
- W2009365344 cites W2951807358 @default.
- W2009365344 cites W4383699677 @default.
- W2009365344 doi "https://doi.org/10.1016/j.combustflame.2012.09.013" @default.
- W2009365344 hasPublicationYear "2013" @default.
- W2009365344 type Work @default.
- W2009365344 sameAs 2009365344 @default.
- W2009365344 citedByCount "89" @default.
- W2009365344 countsByYear W20093653442014 @default.
- W2009365344 countsByYear W20093653442015 @default.
- W2009365344 countsByYear W20093653442016 @default.
- W2009365344 countsByYear W20093653442017 @default.
- W2009365344 countsByYear W20093653442018 @default.
- W2009365344 countsByYear W20093653442019 @default.
- W2009365344 countsByYear W20093653442020 @default.
- W2009365344 countsByYear W20093653442021 @default.
- W2009365344 countsByYear W20093653442022 @default.
- W2009365344 countsByYear W20093653442023 @default.
- W2009365344 crossrefType "journal-article" @default.
- W2009365344 hasAuthorship W2009365344A5042124154 @default.
- W2009365344 hasAuthorship W2009365344A5044532625 @default.
- W2009365344 hasAuthorship W2009365344A5063100344 @default.
- W2009365344 hasConcept C105923489 @default.
- W2009365344 hasConcept C113196181 @default.
- W2009365344 hasConcept C119947313 @default.
- W2009365344 hasConcept C121332964 @default.
- W2009365344 hasConcept C122881758 @default.
- W2009365344 hasConcept C178790620 @default.
- W2009365344 hasConcept C180511626 @default.
- W2009365344 hasConcept C185592680 @default.
- W2009365344 hasConcept C2775846362 @default.
- W2009365344 hasConcept C2776624427 @default.
- W2009365344 hasConcept C2776981874 @default.
- W2009365344 hasConcept C2778142098 @default.
- W2009365344 hasConcept C70477161 @default.
- W2009365344 hasConcept C97355855 @default.
- W2009365344 hasConceptScore W2009365344C105923489 @default.
- W2009365344 hasConceptScore W2009365344C113196181 @default.
- W2009365344 hasConceptScore W2009365344C119947313 @default.
- W2009365344 hasConceptScore W2009365344C121332964 @default.
- W2009365344 hasConceptScore W2009365344C122881758 @default.
- W2009365344 hasConceptScore W2009365344C178790620 @default.
- W2009365344 hasConceptScore W2009365344C180511626 @default.
- W2009365344 hasConceptScore W2009365344C185592680 @default.
- W2009365344 hasConceptScore W2009365344C2775846362 @default.
- W2009365344 hasConceptScore W2009365344C2776624427 @default.
- W2009365344 hasConceptScore W2009365344C2776981874 @default.
- W2009365344 hasConceptScore W2009365344C2778142098 @default.
- W2009365344 hasConceptScore W2009365344C70477161 @default.