Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009376954> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2009376954 endingPage "984" @default.
- W2009376954 startingPage "979" @default.
- W2009376954 abstract "The Complex Variable Boundary Element Method or CVBEM is a numerical technique for approximating particular partial differential equations such as the Laplace or Poisson equations (which frequently occur in physics and engineering problems, among many other fields of study). The advantage in using the CVBEM over traditional domain methods such as finite difference or finite element based methods includes the properties that the resulting CVBEM approximation is a function: (i) defined throughout the entire plane, (ii) that is analytic throughout the problem domain and almost everywhere on the problem boundary and exterior of the problem domain union boundary; (iii) is composed of conjugate two-dimensional real variable functions that are both solutions to the Laplace equation and are orthogonal such as to provide the “flow net” of potential and stream functions, among many other features. In this paper, a procedure is advanced that locates CVBEM nodal point locations on and exterior of the problem boundary such that error in matching problem boundary conditions is reduced. That is, locating the nodal points is part of modeling optimization process, where nodes are not restricted to be located on the problem boundary (as is the typical case) but instead locations are optimized throughout the exterior of the problem domain as part of the modeling procedure. The presented procedure results in nodal locations that achieve considerable error reduction over the usual methods of placing nodes on the problem boundary such as at equally spaced locations or other such procedures. Because of the significant error reduction observed, the number of nodes needed in the model is significantly reduced. It is noted that similar results occur with the real variable boundary element method (or BEM). The CVBEM and relevant nodal location optimization algorithm is programmed to run on program Mathematica, which provides extensive internal modeling and output graphing capabilities, and considerable levels of computational accuracy. The Mathematica source code is provided." @default.
- W2009376954 created "2016-06-24" @default.
- W2009376954 creator A5027318754 @default.
- W2009376954 creator A5039095399 @default.
- W2009376954 creator A5073001258 @default.
- W2009376954 date "2012-06-01" @default.
- W2009376954 modified "2023-09-27" @default.
- W2009376954 title "An algorithm for optimizing CVBEM and BEM nodal point locations" @default.
- W2009376954 cites W1999896803 @default.
- W2009376954 cites W2050094521 @default.
- W2009376954 cites W2053193469 @default.
- W2009376954 cites W617365533 @default.
- W2009376954 cites W623285382 @default.
- W2009376954 doi "https://doi.org/10.1016/j.enganabound.2011.11.008" @default.
- W2009376954 hasPublicationYear "2012" @default.
- W2009376954 type Work @default.
- W2009376954 sameAs 2009376954 @default.
- W2009376954 citedByCount "2" @default.
- W2009376954 countsByYear W20093769542016 @default.
- W2009376954 countsByYear W20093769542017 @default.
- W2009376954 crossrefType "journal-article" @default.
- W2009376954 hasAuthorship W2009376954A5027318754 @default.
- W2009376954 hasAuthorship W2009376954A5039095399 @default.
- W2009376954 hasAuthorship W2009376954A5073001258 @default.
- W2009376954 hasConcept C111335779 @default.
- W2009376954 hasConcept C11413529 @default.
- W2009376954 hasConcept C121332964 @default.
- W2009376954 hasConcept C126255220 @default.
- W2009376954 hasConcept C134306372 @default.
- W2009376954 hasConcept C135628077 @default.
- W2009376954 hasConcept C182310444 @default.
- W2009376954 hasConcept C2524010 @default.
- W2009376954 hasConcept C28826006 @default.
- W2009376954 hasConcept C33923547 @default.
- W2009376954 hasConcept C36503486 @default.
- W2009376954 hasConcept C62354387 @default.
- W2009376954 hasConcept C63632240 @default.
- W2009376954 hasConcept C70615421 @default.
- W2009376954 hasConcept C97355855 @default.
- W2009376954 hasConcept C97937538 @default.
- W2009376954 hasConceptScore W2009376954C111335779 @default.
- W2009376954 hasConceptScore W2009376954C11413529 @default.
- W2009376954 hasConceptScore W2009376954C121332964 @default.
- W2009376954 hasConceptScore W2009376954C126255220 @default.
- W2009376954 hasConceptScore W2009376954C134306372 @default.
- W2009376954 hasConceptScore W2009376954C135628077 @default.
- W2009376954 hasConceptScore W2009376954C182310444 @default.
- W2009376954 hasConceptScore W2009376954C2524010 @default.
- W2009376954 hasConceptScore W2009376954C28826006 @default.
- W2009376954 hasConceptScore W2009376954C33923547 @default.
- W2009376954 hasConceptScore W2009376954C36503486 @default.
- W2009376954 hasConceptScore W2009376954C62354387 @default.
- W2009376954 hasConceptScore W2009376954C63632240 @default.
- W2009376954 hasConceptScore W2009376954C70615421 @default.
- W2009376954 hasConceptScore W2009376954C97355855 @default.
- W2009376954 hasConceptScore W2009376954C97937538 @default.
- W2009376954 hasIssue "6" @default.
- W2009376954 hasLocation W20093769541 @default.
- W2009376954 hasOpenAccess W2009376954 @default.
- W2009376954 hasPrimaryLocation W20093769541 @default.
- W2009376954 hasRelatedWork W1604366890 @default.
- W2009376954 hasRelatedWork W184721637 @default.
- W2009376954 hasRelatedWork W1977653808 @default.
- W2009376954 hasRelatedWork W2005934950 @default.
- W2009376954 hasRelatedWork W2020560880 @default.
- W2009376954 hasRelatedWork W2800408205 @default.
- W2009376954 hasRelatedWork W3092025449 @default.
- W2009376954 hasRelatedWork W4287643753 @default.
- W2009376954 hasRelatedWork W4383347367 @default.
- W2009376954 hasRelatedWork W758452546 @default.
- W2009376954 hasVolume "36" @default.
- W2009376954 isParatext "false" @default.
- W2009376954 isRetracted "false" @default.
- W2009376954 magId "2009376954" @default.
- W2009376954 workType "article" @default.