Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009475085> ?p ?o ?g. }
- W2009475085 endingPage "10613" @default.
- W2009475085 startingPage "10604" @default.
- W2009475085 abstract "Dielectric continuum solvation models are widely used because they are a computationally efficacious way to simulate equilibrium properties of solutes. With advances that allow for molecular-shaped cavities, they have reached a high level of accuracy, in particular for neutral solutes. However, benchmark tests show that existing schemes for defining cavities are unable to consistently predict accurately the effects of solvation on ions, especially anions. This work involves the further development of a protocol put forth earlier for defining the cavities of aqueous solutes, with resulting advances that are most striking for anions. Molecular cavities are defined as interlocked spheres around atoms or groups of atoms in the solute, but the sphere radii are determined by simple empirically based expressions involving the effective atomic charges of the solute atoms (derived from molecular electrostatic potential) and base radii. Both of these terms are optimized for the different types of atoms or functional groups in a training set of neutral and charged solutes. Parameters in these expressions for radii were fitted by minimizing residuals between calculated and measured standard free energies of solvation (ΔGs*), weighted by the uncertainty in the measured value. The calculations were performed using density functional theory with the B3LYP functional and the 6-311+G** basis set and the COnductor-like Screening MOdel (COSMO). The optimized radii definitions reproduce ΔGs* of neutral solutes and singly charged ions in the training set to within experimental uncertainty and, more importantly, accurately predict ΔGs* of compounds outside the training set, in particular anions (J. Phys. Chem. A 2003, 107, 5778). Inherent to this approach, the cavity definitions reflect the strength of specific solute-water interactions. We surmise that this feature underlies the success of the model, referred to as the CD-COSMO model for Charge-Dependent (also Camaioni-Dupuis) COSMO model. These findings offer encouragement that we can keep extending this scheme to other functional groups and obtain better accuracy in using continuum solvation models to predict equilibrium properties of aqueous ionic solutes. The approach is illustrated for a number of test cases, including the determination of acidities of an amine base, a study of the tautomerization equilibrium of a zwitterionic molecule (glycine), and calculating solvation energies of transition states toward a full characterization of reaction pathways in aqueous phase, here in SN2 exchange reactions. The calculated reaction barriers in aqueous solution are in excellent agreement with experimental values." @default.
- W2009475085 created "2016-06-24" @default.
- W2009475085 creator A5005153563 @default.
- W2009475085 creator A5022559855 @default.
- W2009475085 creator A5030572484 @default.
- W2009475085 creator A5062213912 @default.
- W2009475085 creator A5074474528 @default.
- W2009475085 date "2008-09-25" @default.
- W2009475085 modified "2023-09-27" @default.
- W2009475085 title "Charge-Dependent Cavity Radii for an Accurate Dielectric Continuum Model of Solvation with Emphasis on Ions: Aqueous Solutes with Oxo, Hydroxo, Amino, Methyl, Chloro, Bromo, and Fluoro Functionalities" @default.
- W2009475085 cites W120961229 @default.
- W2009475085 cites W1505184820 @default.
- W2009475085 cites W1963737263 @default.
- W2009475085 cites W1967382717 @default.
- W2009475085 cites W1968899948 @default.
- W2009475085 cites W1971275758 @default.
- W2009475085 cites W1972327332 @default.
- W2009475085 cites W1975708211 @default.
- W2009475085 cites W1976416192 @default.
- W2009475085 cites W1982702680 @default.
- W2009475085 cites W1988165294 @default.
- W2009475085 cites W1990159165 @default.
- W2009475085 cites W1992862705 @default.
- W2009475085 cites W1995609818 @default.
- W2009475085 cites W1997151511 @default.
- W2009475085 cites W1999248820 @default.
- W2009475085 cites W2019516502 @default.
- W2009475085 cites W2021502908 @default.
- W2009475085 cites W2024937237 @default.
- W2009475085 cites W2026467865 @default.
- W2009475085 cites W2036450980 @default.
- W2009475085 cites W2037295961 @default.
- W2009475085 cites W2039998738 @default.
- W2009475085 cites W2044039308 @default.
- W2009475085 cites W2055563809 @default.
- W2009475085 cites W2058834481 @default.
- W2009475085 cites W2058848030 @default.
- W2009475085 cites W2063609748 @default.
- W2009475085 cites W2064445436 @default.
- W2009475085 cites W2068119305 @default.
- W2009475085 cites W2070385041 @default.
- W2009475085 cites W2071156175 @default.
- W2009475085 cites W2072441471 @default.
- W2009475085 cites W2075730114 @default.
- W2009475085 cites W2075970098 @default.
- W2009475085 cites W2077541768 @default.
- W2009475085 cites W2089595302 @default.
- W2009475085 cites W2093492407 @default.
- W2009475085 cites W2111576097 @default.
- W2009475085 cites W2122190648 @default.
- W2009475085 cites W2135974653 @default.
- W2009475085 cites W2139132850 @default.
- W2009475085 cites W2143981217 @default.
- W2009475085 cites W2148017006 @default.
- W2009475085 cites W2148911913 @default.
- W2009475085 cites W2155273994 @default.
- W2009475085 cites W2163746642 @default.
- W2009475085 cites W2164318957 @default.
- W2009475085 cites W2164977216 @default.
- W2009475085 cites W2324603767 @default.
- W2009475085 cites W2326622347 @default.
- W2009475085 cites W2330420316 @default.
- W2009475085 cites W2492101850 @default.
- W2009475085 cites W2951943573 @default.
- W2009475085 cites W3005179276 @default.
- W2009475085 cites W4234428299 @default.
- W2009475085 cites W4237738536 @default.
- W2009475085 cites W4251071971 @default.
- W2009475085 doi "https://doi.org/10.1021/jp804092v" @default.
- W2009475085 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18816107" @default.
- W2009475085 hasPublicationYear "2008" @default.
- W2009475085 type Work @default.
- W2009475085 sameAs 2009475085 @default.
- W2009475085 citedByCount "30" @default.
- W2009475085 countsByYear W20094750852012 @default.
- W2009475085 countsByYear W20094750852014 @default.
- W2009475085 countsByYear W20094750852015 @default.
- W2009475085 countsByYear W20094750852016 @default.
- W2009475085 countsByYear W20094750852017 @default.
- W2009475085 countsByYear W20094750852018 @default.
- W2009475085 countsByYear W20094750852019 @default.
- W2009475085 countsByYear W20094750852020 @default.
- W2009475085 countsByYear W20094750852021 @default.
- W2009475085 crossrefType "journal-article" @default.
- W2009475085 hasAuthorship W2009475085A5005153563 @default.
- W2009475085 hasAuthorship W2009475085A5022559855 @default.
- W2009475085 hasAuthorship W2009475085A5030572484 @default.
- W2009475085 hasAuthorship W2009475085A5062213912 @default.
- W2009475085 hasAuthorship W2009475085A5074474528 @default.
- W2009475085 hasConcept C121332964 @default.
- W2009475085 hasConcept C133386390 @default.
- W2009475085 hasConcept C145148216 @default.
- W2009475085 hasConcept C147597530 @default.
- W2009475085 hasConcept C147789679 @default.
- W2009475085 hasConcept C148093993 @default.
- W2009475085 hasConcept C149823470 @default.
- W2009475085 hasConcept C152365726 @default.
- W2009475085 hasConcept C159467904 @default.