Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009477401> ?p ?o ?g. }
- W2009477401 endingPage "59" @default.
- W2009477401 startingPage "41" @default.
- W2009477401 abstract "Two-degree-of-freedom (2dof) vortex-induced vibration (VIV) of a circular cylinder in oscillatory flow is investigated numerically. The direction of the oscillatory flow is perpendicular to the spanwise direction of the circular cylinder. Simulations are carried out for the Keulegan–Carpenter (KC) numbers of 10, 20 and 40 and the Reynolds numbers ranging from 308 to 9240. The ratio of the Reynolds number to the reduced velocity is 308. At KC=10, the amplitude of the primary frequency component is much larger than those of other frequency components. Most vibrations for KC=20 and 40 have multiple frequencies. The primary frequency of the response in the cross-flow direction decreases with the increasing reduced velocity, except when the reduced velocity is very small. Because the calculated primary frequencies of the response in the cross-flow direction are multiple of the oscillatory flow frequency in most of the calculated cases, the responses are classified into single-frequency mode, double-frequency mode, triple frequency mode, etc. If the reduced velocity is in the range where the VIV is transiting from one mode to another, the vibration is very irregular. For each KC number the range of the reduced velocity can be divided into a cross-flow-in-phase regime (low Vr), where the response and the hydrodynamic force in the cross-flow direction synchronize, and a cross-flow-anti-phase regime (high Vr), where the response and the hydrodynamic force in the cross-flow direction are in anti-phase with each other. The boundary values of Vr between the cross-flow-in-phase and the cross-flow-anti-phase regimes are 7, 9 and 11 for KC=10, 20 and 40, respectively. For KC=20, another cross-flow-anti-phase regime is found between 15≤Vr≤19. Similarly the in-line-in-phase and the in-line-anti-phase regimes are also identified for the response in the in-line direction. It is found that the boundary value of Vr between the in-line-in-phase and the in-line-anti-phase regimes is greater than that in the cross-flow direction. They are 14 and 26 for KC=10 and 20, respectively. Maximum amplitude occurs at the boundary value of the reduced velocity between in-phase regime and anti-phase regime in both the x- and the y-directions." @default.
- W2009477401 created "2016-06-24" @default.
- W2009477401 creator A5050272269 @default.
- W2009477401 date "2013-05-01" @default.
- W2009477401 modified "2023-10-01" @default.
- W2009477401 title "Numerical investigation of two-degree-of-freedom vortex-induced vibration of a circular cylinder in oscillatory flow" @default.
- W2009477401 cites W1965195783 @default.
- W2009477401 cites W1970847233 @default.
- W2009477401 cites W1974097079 @default.
- W2009477401 cites W1977298104 @default.
- W2009477401 cites W1979584441 @default.
- W2009477401 cites W1979658800 @default.
- W2009477401 cites W1981361183 @default.
- W2009477401 cites W1983113570 @default.
- W2009477401 cites W1984304197 @default.
- W2009477401 cites W1987292221 @default.
- W2009477401 cites W1988803801 @default.
- W2009477401 cites W2001639152 @default.
- W2009477401 cites W2003209989 @default.
- W2009477401 cites W2010189530 @default.
- W2009477401 cites W2017442637 @default.
- W2009477401 cites W2021922654 @default.
- W2009477401 cites W2021945816 @default.
- W2009477401 cites W2027180208 @default.
- W2009477401 cites W2031308559 @default.
- W2009477401 cites W2056550029 @default.
- W2009477401 cites W2059107092 @default.
- W2009477401 cites W2060711624 @default.
- W2009477401 cites W2063824742 @default.
- W2009477401 cites W2085274758 @default.
- W2009477401 cites W2087365002 @default.
- W2009477401 cites W2090379715 @default.
- W2009477401 cites W2093578402 @default.
- W2009477401 cites W2094864141 @default.
- W2009477401 cites W2105837825 @default.
- W2009477401 cites W2110385488 @default.
- W2009477401 cites W2119646003 @default.
- W2009477401 cites W2120008393 @default.
- W2009477401 cites W2163016253 @default.
- W2009477401 cites W2164477010 @default.
- W2009477401 cites W2170254912 @default.
- W2009477401 doi "https://doi.org/10.1016/j.jfluidstructs.2013.02.003" @default.
- W2009477401 hasPublicationYear "2013" @default.
- W2009477401 type Work @default.
- W2009477401 sameAs 2009477401 @default.
- W2009477401 citedByCount "30" @default.
- W2009477401 countsByYear W20094774012014 @default.
- W2009477401 countsByYear W20094774012015 @default.
- W2009477401 countsByYear W20094774012017 @default.
- W2009477401 countsByYear W20094774012018 @default.
- W2009477401 countsByYear W20094774012019 @default.
- W2009477401 countsByYear W20094774012020 @default.
- W2009477401 countsByYear W20094774012021 @default.
- W2009477401 countsByYear W20094774012022 @default.
- W2009477401 countsByYear W20094774012023 @default.
- W2009477401 crossrefType "journal-article" @default.
- W2009477401 hasAuthorship W2009477401A5050272269 @default.
- W2009477401 hasConcept C10599892 @default.
- W2009477401 hasConcept C121332964 @default.
- W2009477401 hasConcept C140820882 @default.
- W2009477401 hasConcept C178760647 @default.
- W2009477401 hasConcept C182748727 @default.
- W2009477401 hasConcept C196558001 @default.
- W2009477401 hasConcept C198394728 @default.
- W2009477401 hasConcept C199631012 @default.
- W2009477401 hasConcept C203311528 @default.
- W2009477401 hasConcept C24890656 @default.
- W2009477401 hasConcept C2524010 @default.
- W2009477401 hasConcept C33923547 @default.
- W2009477401 hasConcept C38349280 @default.
- W2009477401 hasConcept C57879066 @default.
- W2009477401 hasConceptScore W2009477401C10599892 @default.
- W2009477401 hasConceptScore W2009477401C121332964 @default.
- W2009477401 hasConceptScore W2009477401C140820882 @default.
- W2009477401 hasConceptScore W2009477401C178760647 @default.
- W2009477401 hasConceptScore W2009477401C182748727 @default.
- W2009477401 hasConceptScore W2009477401C196558001 @default.
- W2009477401 hasConceptScore W2009477401C198394728 @default.
- W2009477401 hasConceptScore W2009477401C199631012 @default.
- W2009477401 hasConceptScore W2009477401C203311528 @default.
- W2009477401 hasConceptScore W2009477401C24890656 @default.
- W2009477401 hasConceptScore W2009477401C2524010 @default.
- W2009477401 hasConceptScore W2009477401C33923547 @default.
- W2009477401 hasConceptScore W2009477401C38349280 @default.
- W2009477401 hasConceptScore W2009477401C57879066 @default.
- W2009477401 hasLocation W20094774011 @default.
- W2009477401 hasOpenAccess W2009477401 @default.
- W2009477401 hasPrimaryLocation W20094774011 @default.
- W2009477401 hasRelatedWork W1981113038 @default.
- W2009477401 hasRelatedWork W2009154752 @default.
- W2009477401 hasRelatedWork W2012182949 @default.
- W2009477401 hasRelatedWork W2017546617 @default.
- W2009477401 hasRelatedWork W2050665704 @default.
- W2009477401 hasRelatedWork W2090263823 @default.
- W2009477401 hasRelatedWork W2735282069 @default.
- W2009477401 hasRelatedWork W2736503688 @default.
- W2009477401 hasRelatedWork W2788733877 @default.
- W2009477401 hasRelatedWork W4281766003 @default.