Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009509871> ?p ?o ?g. }
- W2009509871 endingPage "31419" @default.
- W2009509871 startingPage "31407" @default.
- W2009509871 abstract "Analysis of erosional valleys, geologic materials and features, and topography through time in the Thaumasia region of Mars using co‐registered digital spatial data sets reveals significant associations that relate to valley origin. Valleys tend to originate (1) on Noachian to Early Hesperian (stages 1 and 2) large volcanoes, (2) within 50–100 km of stages 1 and 2 rift systems, and (3) within 100 km of Noachian (stage 1) impact craters >50 km in diameter. These geologic preferences explain observations of higher valley‐source densities (VSDs) in areas of higher elevations and regional slopes (>1°) because the volcanoes, rifts, and craters form high, steep topography or occur in terrain of high relief. Other stage 1 and stage 2 high, steep terrains, however, do not show high VSDs. The tendency for valleys to concentrate near geologic features and the overall low drainage densities in Thaumasia compared to terrestrial surfaces rule out widespread precipitation as a major factor in valley formation (as is proposed in wann, wet climate scenarios) except perhaps during the Early Noachian, for which much of the geologic record has been obliterated. Instead, volcanoes and rifts may indicate the presence of shallow crustal intrusions that could lead to local hydrothermal circulation, melting of ground ice and snow, and groundwater sapping. However, impact‐crater melt would provide a heat source at the surface that might drive away water, fonning valleys in the process. Post‐stage 1 craters mostly have low nearby VSDs, which, for valleys incised in older rocks, suggests burial by ejecta and, for younger valleys, may indicate desiccation of near‐surface water and deepening of the cryosphere. Later Hesperian and Amazonian (stages 3 and 4) valleys originate within 100–200 km of three young, large impact craters and near rifts systems at Warrego Valles and the southern part of Coprates rise. These valleys likely developed when the cryosphere was a couple kilometers or more thick, inhibiting valley development by hydrothermal circulation. However, eruption of groundwater may have occurred from impact‐induced fracturing and lateral and perhaps minor upward transport of water due to seismic pumping. The two smaller craters formed along the plateau margin where the highest potential hydraulic head would occur in aquifers beneath the plateau. In the case of the larger crater (Lowell, 200 km in diameter), potential aquifers would likely be at depths of kilometers below the cryosphere. Seismic energy generated by the Lowell impactor would have been much greater, pumping both groundwater and perhaps fluidized slurry to the surface from beneath the cryosphere to form the young valleys and flow deposit. Along the margin of Thaumasia, tectonic pressurization of groundwater also may have contributed to valley formation. Dissection of rim materials of the Argyre impact may relate to tectonic activity and the unconsolidated state of basin ejecta." @default.
- W2009509871 created "2016-06-24" @default.
- W2009509871 creator A5016952422 @default.
- W2009509871 creator A5037783541 @default.
- W2009509871 creator A5068352270 @default.
- W2009509871 creator A5072724024 @default.
- W2009509871 date "1998-12-01" @default.
- W2009509871 modified "2023-10-05" @default.
- W2009509871 title "Erosional valleys in the Thaumasia region of Mars: Hydrothermal and seismic origins" @default.
- W2009509871 cites W1612187913 @default.
- W2009509871 cites W1967517928 @default.
- W2009509871 cites W1970147747 @default.
- W2009509871 cites W1982283765 @default.
- W2009509871 cites W1994140113 @default.
- W2009509871 cites W1997283314 @default.
- W2009509871 cites W2001002135 @default.
- W2009509871 cites W2001009591 @default.
- W2009509871 cites W2004019546 @default.
- W2009509871 cites W2004688163 @default.
- W2009509871 cites W2019919661 @default.
- W2009509871 cites W2024211543 @default.
- W2009509871 cites W2026583694 @default.
- W2009509871 cites W2027838647 @default.
- W2009509871 cites W2028134116 @default.
- W2009509871 cites W2031235524 @default.
- W2009509871 cites W2036881811 @default.
- W2009509871 cites W2051600837 @default.
- W2009509871 cites W2060997761 @default.
- W2009509871 cites W2069803633 @default.
- W2009509871 cites W2083647903 @default.
- W2009509871 cites W2085982749 @default.
- W2009509871 cites W2091707644 @default.
- W2009509871 cites W2092601921 @default.
- W2009509871 cites W2094017836 @default.
- W2009509871 cites W2113865155 @default.
- W2009509871 cites W2121723338 @default.
- W2009509871 cites W2124804572 @default.
- W2009509871 cites W2142545238 @default.
- W2009509871 cites W2153889975 @default.
- W2009509871 cites W2156048584 @default.
- W2009509871 cites W2170615758 @default.
- W2009509871 doi "https://doi.org/10.1029/98je01599" @default.
- W2009509871 hasPublicationYear "1998" @default.
- W2009509871 type Work @default.
- W2009509871 sameAs 2009509871 @default.
- W2009509871 citedByCount "95" @default.
- W2009509871 countsByYear W20095098712012 @default.
- W2009509871 countsByYear W20095098712013 @default.
- W2009509871 countsByYear W20095098712014 @default.
- W2009509871 countsByYear W20095098712017 @default.
- W2009509871 countsByYear W20095098712018 @default.
- W2009509871 countsByYear W20095098712019 @default.
- W2009509871 countsByYear W20095098712020 @default.
- W2009509871 countsByYear W20095098712022 @default.
- W2009509871 countsByYear W20095098712023 @default.
- W2009509871 crossrefType "journal-article" @default.
- W2009509871 hasAuthorship W2009509871A5016952422 @default.
- W2009509871 hasAuthorship W2009509871A5037783541 @default.
- W2009509871 hasAuthorship W2009509871A5068352270 @default.
- W2009509871 hasAuthorship W2009509871A5072724024 @default.
- W2009509871 hasBestOaLocation W20095098711 @default.
- W2009509871 hasConcept C109007969 @default.
- W2009509871 hasConcept C112959462 @default.
- W2009509871 hasConcept C113754120 @default.
- W2009509871 hasConcept C114793014 @default.
- W2009509871 hasConcept C120806208 @default.
- W2009509871 hasConcept C121332964 @default.
- W2009509871 hasConcept C127313418 @default.
- W2009509871 hasConcept C127592171 @default.
- W2009509871 hasConcept C146357865 @default.
- W2009509871 hasConcept C151730666 @default.
- W2009509871 hasConcept C17409809 @default.
- W2009509871 hasConcept C179537507 @default.
- W2009509871 hasConcept C18903297 @default.
- W2009509871 hasConcept C1965285 @default.
- W2009509871 hasConcept C2776860271 @default.
- W2009509871 hasConcept C2777094093 @default.
- W2009509871 hasConcept C2778600265 @default.
- W2009509871 hasConcept C2778697265 @default.
- W2009509871 hasConcept C2780001261 @default.
- W2009509871 hasConcept C50682988 @default.
- W2009509871 hasConcept C535291247 @default.
- W2009509871 hasConcept C62520636 @default.
- W2009509871 hasConcept C83260615 @default.
- W2009509871 hasConcept C86803240 @default.
- W2009509871 hasConcept C87355193 @default.
- W2009509871 hasConcept C92150305 @default.
- W2009509871 hasConceptScore W2009509871C109007969 @default.
- W2009509871 hasConceptScore W2009509871C112959462 @default.
- W2009509871 hasConceptScore W2009509871C113754120 @default.
- W2009509871 hasConceptScore W2009509871C114793014 @default.
- W2009509871 hasConceptScore W2009509871C120806208 @default.
- W2009509871 hasConceptScore W2009509871C121332964 @default.
- W2009509871 hasConceptScore W2009509871C127313418 @default.
- W2009509871 hasConceptScore W2009509871C127592171 @default.
- W2009509871 hasConceptScore W2009509871C146357865 @default.
- W2009509871 hasConceptScore W2009509871C151730666 @default.
- W2009509871 hasConceptScore W2009509871C17409809 @default.