Matches in SemOpenAlex for { <https://semopenalex.org/work/W200959021> ?p ?o ?g. }
- W200959021 abstract "This thesis summarizes certain boundary element methods applied to some initial and boundary value problems. Our model problem is the two-dimensional homogeneous heat conduction problem with vanishing initial data. We use the heat potential representation of the solution. The given boundary conditions, as well as the choice of the representation formula, yield various boundary integral equations. For the sake of simplicity, we use the direct boundary integral approach, where the unknown boundary density appearing in the boundary integral equation is a quantity of physical meaning. We consider two different sets of boundary conditions, the Dirichlet problem, where the boundary temperature is given and the Neumann problem, where the heat flux across the boundary is given. Even a nonlinear Neumann condition satisfying certain monotonicity and growth conditions is possible. The approach yields a nonlinear boundary integral equation of the second kind. In the stationary case, the model problem reduces to a potential problem with a nonlinear Neumann condition. We use the spaces of smoothest splines as trial functions. The nonlinearity is approximated by using the L-orthogonal projection. The resulting collocation scheme retains the optimal L-convergence. Numerical experiments are in agreement with this result. This approach generalizes to the time dependent case. The trial functions are tensor products of piecewise linear and piecewise constant splines. The proposed projection method uses interpolation with respect to the space variable and the orthogonal projection with respect to the time variable. Compared to the Galerkin method, this approach simplifies the realization of the discrete matrix equations. In addition, the rate of the convergence is of optimal order. On the other hand, the Dirichlet problem, where the boundary temperature is given, leads to a single layer heat operator equation of the first kind. In the first approach, we use tensor products of piecewise linear splines as trial functions with collocation at the nodal points. Stability and suboptimal L-convergence of the method were proved in the case of a circular domain. Numerical experiments indicate the expected quadratic L-convergence. Later, a Petrov-Galerkin approach was proposed, where the trial functions were tensor products of piecewise linear and piecewise constant splines. The resulting approximative scheme is stable and convergent. The analysis has been carried out in the cases of the single layer heat operator and the hypersingular heat operator. The rate of the convergence with respect to the L-norm is also here of suboptimal order." @default.
- W200959021 created "2016-06-24" @default.
- W200959021 creator A5015333946 @default.
- W200959021 date "2000-01-01" @default.
- W200959021 modified "2023-09-23" @default.
- W200959021 title "Some boundary element methods for heat conduction problems" @default.
- W200959021 cites W124863835 @default.
- W200959021 cites W126242730 @default.
- W200959021 cites W1514581472 @default.
- W200959021 cites W1555674425 @default.
- W200959021 cites W1582171922 @default.
- W200959021 cites W1597209545 @default.
- W200959021 cites W1602967628 @default.
- W200959021 cites W1968186229 @default.
- W200959021 cites W1970088012 @default.
- W200959021 cites W1974282445 @default.
- W200959021 cites W1975263119 @default.
- W200959021 cites W1985343836 @default.
- W200959021 cites W1992814115 @default.
- W200959021 cites W2012800328 @default.
- W200959021 cites W2014208709 @default.
- W200959021 cites W2014802418 @default.
- W200959021 cites W2016133270 @default.
- W200959021 cites W2023585655 @default.
- W200959021 cites W2027949551 @default.
- W200959021 cites W2032075652 @default.
- W200959021 cites W2032277684 @default.
- W200959021 cites W2036156558 @default.
- W200959021 cites W2042261731 @default.
- W200959021 cites W2046334963 @default.
- W200959021 cites W2047816051 @default.
- W200959021 cites W2053789685 @default.
- W200959021 cites W2057534299 @default.
- W200959021 cites W2071383673 @default.
- W200959021 cites W2071983833 @default.
- W200959021 cites W2075477953 @default.
- W200959021 cites W2080205305 @default.
- W200959021 cites W2124471636 @default.
- W200959021 cites W2133532125 @default.
- W200959021 cites W2138566506 @default.
- W200959021 cites W2153780713 @default.
- W200959021 cites W2323120621 @default.
- W200959021 cites W2801179766 @default.
- W200959021 cites W648485858 @default.
- W200959021 cites W653136046 @default.
- W200959021 cites W2056459463 @default.
- W200959021 cites W2478847857 @default.
- W200959021 hasPublicationYear "2000" @default.
- W200959021 type Work @default.
- W200959021 sameAs 200959021 @default.
- W200959021 citedByCount "1" @default.
- W200959021 crossrefType "journal-article" @default.
- W200959021 hasAuthorship W200959021A5015333946 @default.
- W200959021 hasConcept C106947605 @default.
- W200959021 hasConcept C108257041 @default.
- W200959021 hasConcept C11413529 @default.
- W200959021 hasConcept C121332964 @default.
- W200959021 hasConcept C134306372 @default.
- W200959021 hasConcept C135628077 @default.
- W200959021 hasConcept C154416045 @default.
- W200959021 hasConcept C158622935 @default.
- W200959021 hasConcept C163681178 @default.
- W200959021 hasConcept C182310444 @default.
- W200959021 hasConcept C186899397 @default.
- W200959021 hasConcept C33923547 @default.
- W200959021 hasConcept C42045870 @default.
- W200959021 hasConcept C52890695 @default.
- W200959021 hasConcept C57493831 @default.
- W200959021 hasConcept C62354387 @default.
- W200959021 hasConcept C62520636 @default.
- W200959021 hasConcept C63632240 @default.
- W200959021 hasConcept C82047721 @default.
- W200959021 hasConcept C97355855 @default.
- W200959021 hasConceptScore W200959021C106947605 @default.
- W200959021 hasConceptScore W200959021C108257041 @default.
- W200959021 hasConceptScore W200959021C11413529 @default.
- W200959021 hasConceptScore W200959021C121332964 @default.
- W200959021 hasConceptScore W200959021C134306372 @default.
- W200959021 hasConceptScore W200959021C135628077 @default.
- W200959021 hasConceptScore W200959021C154416045 @default.
- W200959021 hasConceptScore W200959021C158622935 @default.
- W200959021 hasConceptScore W200959021C163681178 @default.
- W200959021 hasConceptScore W200959021C182310444 @default.
- W200959021 hasConceptScore W200959021C186899397 @default.
- W200959021 hasConceptScore W200959021C33923547 @default.
- W200959021 hasConceptScore W200959021C42045870 @default.
- W200959021 hasConceptScore W200959021C52890695 @default.
- W200959021 hasConceptScore W200959021C57493831 @default.
- W200959021 hasConceptScore W200959021C62354387 @default.
- W200959021 hasConceptScore W200959021C62520636 @default.
- W200959021 hasConceptScore W200959021C63632240 @default.
- W200959021 hasConceptScore W200959021C82047721 @default.
- W200959021 hasConceptScore W200959021C97355855 @default.
- W200959021 hasLocation W2009590211 @default.
- W200959021 hasOpenAccess W200959021 @default.
- W200959021 hasPrimaryLocation W2009590211 @default.
- W200959021 hasRelatedWork W1975742657 @default.
- W200959021 hasRelatedWork W1994070966 @default.
- W200959021 hasRelatedWork W1999721808 @default.
- W200959021 hasRelatedWork W2005309749 @default.