Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009634503> ?p ?o ?g. }
- W2009634503 endingPage "25720" @default.
- W2009634503 startingPage "25711" @default.
- W2009634503 abstract "Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 μg/ml) inhibited the [Ca2+]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3. Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 μg/ml) inhibited the [Ca2+]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3." @default.
- W2009634503 created "2016-06-24" @default.
- W2009634503 creator A5012891699 @default.
- W2009634503 creator A5027918582 @default.
- W2009634503 creator A5042637006 @default.
- W2009634503 creator A5044731371 @default.
- W2009634503 creator A5054894206 @default.
- W2009634503 creator A5079566471 @default.
- W2009634503 creator A5085142320 @default.
- W2009634503 date "2014-09-01" @default.
- W2009634503 modified "2023-10-16" @default.
- W2009634503 title "Molecular Mechanisms for Sweet-suppressing Effect of Gymnemic Acids" @default.
- W2009634503 cites W1502937202 @default.
- W2009634503 cites W1517221659 @default.
- W2009634503 cites W1833104430 @default.
- W2009634503 cites W1945680072 @default.
- W2009634503 cites W1953348842 @default.
- W2009634503 cites W1969201146 @default.
- W2009634503 cites W1973046220 @default.
- W2009634503 cites W1983792789 @default.
- W2009634503 cites W1984370061 @default.
- W2009634503 cites W1989693650 @default.
- W2009634503 cites W1989944952 @default.
- W2009634503 cites W1998591058 @default.
- W2009634503 cites W2004264351 @default.
- W2009634503 cites W2008728387 @default.
- W2009634503 cites W2009260863 @default.
- W2009634503 cites W2022950330 @default.
- W2009634503 cites W2023343746 @default.
- W2009634503 cites W2024011576 @default.
- W2009634503 cites W2030960760 @default.
- W2009634503 cites W2034015328 @default.
- W2009634503 cites W2036876813 @default.
- W2009634503 cites W2044187501 @default.
- W2009634503 cites W2044539741 @default.
- W2009634503 cites W2045240167 @default.
- W2009634503 cites W2046325265 @default.
- W2009634503 cites W2047358952 @default.
- W2009634503 cites W2050321525 @default.
- W2009634503 cites W2057200181 @default.
- W2009634503 cites W2067388704 @default.
- W2009634503 cites W2073115006 @default.
- W2009634503 cites W2091761874 @default.
- W2009634503 cites W2093140679 @default.
- W2009634503 cites W2099666647 @default.
- W2009634503 cites W2119368681 @default.
- W2009634503 cites W2122060463 @default.
- W2009634503 cites W2126103175 @default.
- W2009634503 cites W2130129941 @default.
- W2009634503 cites W2132629607 @default.
- W2009634503 cites W2149963584 @default.
- W2009634503 cites W2151766908 @default.
- W2009634503 cites W2155600765 @default.
- W2009634503 cites W2158534713 @default.
- W2009634503 cites W2162327153 @default.
- W2009634503 cites W2176516200 @default.
- W2009634503 cites W2951483764 @default.
- W2009634503 cites W2952129142 @default.
- W2009634503 cites W4249590403 @default.
- W2009634503 doi "https://doi.org/10.1074/jbc.m114.560409" @default.
- W2009634503 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4162174" @default.
- W2009634503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25056955" @default.
- W2009634503 hasPublicationYear "2014" @default.
- W2009634503 type Work @default.
- W2009634503 sameAs 2009634503 @default.
- W2009634503 citedByCount "51" @default.
- W2009634503 countsByYear W20096345032016 @default.
- W2009634503 countsByYear W20096345032017 @default.
- W2009634503 countsByYear W20096345032018 @default.
- W2009634503 countsByYear W20096345032019 @default.
- W2009634503 countsByYear W20096345032020 @default.
- W2009634503 countsByYear W20096345032021 @default.
- W2009634503 countsByYear W20096345032022 @default.
- W2009634503 countsByYear W20096345032023 @default.
- W2009634503 crossrefType "journal-article" @default.
- W2009634503 hasAuthorship W2009634503A5012891699 @default.
- W2009634503 hasAuthorship W2009634503A5027918582 @default.
- W2009634503 hasAuthorship W2009634503A5042637006 @default.
- W2009634503 hasAuthorship W2009634503A5044731371 @default.
- W2009634503 hasAuthorship W2009634503A5054894206 @default.
- W2009634503 hasAuthorship W2009634503A5079566471 @default.
- W2009634503 hasAuthorship W2009634503A5085142320 @default.
- W2009634503 hasBestOaLocation W20096345031 @default.
- W2009634503 hasConcept C118892022 @default.
- W2009634503 hasConcept C170493617 @default.
- W2009634503 hasConcept C174510640 @default.
- W2009634503 hasConcept C185592680 @default.
- W2009634503 hasConcept C24530287 @default.
- W2009634503 hasConcept C515207424 @default.
- W2009634503 hasConcept C55493867 @default.
- W2009634503 hasConcept C86803240 @default.
- W2009634503 hasConceptScore W2009634503C118892022 @default.
- W2009634503 hasConceptScore W2009634503C170493617 @default.
- W2009634503 hasConceptScore W2009634503C174510640 @default.
- W2009634503 hasConceptScore W2009634503C185592680 @default.
- W2009634503 hasConceptScore W2009634503C24530287 @default.
- W2009634503 hasConceptScore W2009634503C515207424 @default.
- W2009634503 hasConceptScore W2009634503C55493867 @default.