Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009643105> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2009643105 endingPage "1204" @default.
- W2009643105 startingPage "1193" @default.
- W2009643105 abstract "A growing body of evidence reveals that much of the silica that crystallizes at the Earth's surface is a finely intergrown mixture of quartz and moganite. To better understand the behaviour of both solid and aqueous silica in these systems, the kinetics and thermodynamic properties for endmember moganite have been determined as a function of temperature from 25° to 200°C. Because endmember moganite has yet to be found in nature or synthesized in the laboratory, these properties were determined indirectly by (1) measuring quartz dissolution rates at pH 3.5, (2) measuring the dissolution rates of quartz/moganite mixtures of various proportions at pH 3.5 to deduce the endmember moganite dissolution rate, (3) using the principle of detailed balancing and the assumption that silica polymorphs have equal precipitation rates (Rimstidt and Barnes, 1980) to compute the equilibrium constant for the quartz to moganite transformation reaction, and (4) regressing these data together with corresponding values for quartz to generate endmember moganite thermodynamic properties. Equations describing the temperature dependence of the specific dissolution rate of quartz, k+,Si,qtz (mole/m2/s), and moganite, k+,Si,mog (mole/m2/s) at pH 3.5 and far from equilibrium are ln k+,Si,qtz = −0.0463 − 80480RTfor quartzln k+,Si,mog = −0.975 − 70502RTfor moganite which is consistent with activation energy of 80.5 and 70.5 kJ/mol for quartz and moganite, respectively. The specific dissolution rate of moganite is 7.4 times faster than that of quartz at pH 3.5 and 25°C. The surface area of quartz/moganite mixtures increase exponentially with increasing moganite content. It follows that the apparent dissolution and precipitation rate of quartz/moganite mixtures also increases exponentially with moganite content. The standard state enthalpy and Gibbs free energy of formation for moganite from the elements at 25°C and one bar was calculated to be −900.723 and −851.314 kJ/mole which is 10 and 5 kJ/mol, respectively, more positive than those for quartz. The standard state entropy at these conditions is 58.245 J/mole/K, which is 17 J/mol/K greater than that for quartz. The logarithm of the equilibrium constant for moganite hydrolysis is −3.14 at 25°C and one bar, which corresponds to a solubility of 44 mg/kg silica. In contrast, the logarithm of the equilibrium constant for quartz hydrolysis is −4.00 which corresponds to a solubility of 6 mg/kg silica. The difference in the hydrolysis constants decreases with increasing temperature. The relative rapid dissolution rate of moganite and its thermodynamic instability with respect to quartz is consistent with the observation (Heaney and Post, 1992) that moganite is depleted in weathered chert and chalcedony, and it supports the diagenetic silica sequence proposed by Heaney (1995), who documented a scarcity of moganite in rocks older than 100 m.y. It also follows that the high abundance of moganite in recent arid environments is likely due to the lack of water available to mediate the dissolution of moganite and simultaneous precipitation of quartz." @default.
- W2009643105 created "2016-06-24" @default.
- W2009643105 creator A5026636409 @default.
- W2009643105 creator A5037386793 @default.
- W2009643105 creator A5044132845 @default.
- W2009643105 creator A5078618171 @default.
- W2009643105 date "1997-03-01" @default.
- W2009643105 modified "2023-10-14" @default.
- W2009643105 title "Kinetic and thermodynamic properties of moganite, a novel silica polymorph" @default.
- W2009643105 cites W1965129842 @default.
- W2009643105 cites W1972703002 @default.
- W2009643105 cites W1988350854 @default.
- W2009643105 cites W1989182463 @default.
- W2009643105 cites W2014365296 @default.
- W2009643105 cites W2016273341 @default.
- W2009643105 cites W2021839932 @default.
- W2009643105 cites W2022321851 @default.
- W2009643105 cites W2022900900 @default.
- W2009643105 cites W2031717627 @default.
- W2009643105 cites W2059387415 @default.
- W2009643105 cites W2061849395 @default.
- W2009643105 cites W2062495931 @default.
- W2009643105 cites W2069428893 @default.
- W2009643105 cites W2069773493 @default.
- W2009643105 cites W2072768848 @default.
- W2009643105 cites W2077664513 @default.
- W2009643105 cites W2079650581 @default.
- W2009643105 cites W2092354137 @default.
- W2009643105 cites W2105779189 @default.
- W2009643105 cites W2111794495 @default.
- W2009643105 cites W2168889067 @default.
- W2009643105 cites W2376388796 @default.
- W2009643105 cites W2520547494 @default.
- W2009643105 doi "https://doi.org/10.1016/s0016-7037(96)00409-7" @default.
- W2009643105 hasPublicationYear "1997" @default.
- W2009643105 type Work @default.
- W2009643105 sameAs 2009643105 @default.
- W2009643105 citedByCount "97" @default.
- W2009643105 countsByYear W20096431052012 @default.
- W2009643105 countsByYear W20096431052013 @default.
- W2009643105 countsByYear W20096431052014 @default.
- W2009643105 countsByYear W20096431052015 @default.
- W2009643105 countsByYear W20096431052016 @default.
- W2009643105 countsByYear W20096431052017 @default.
- W2009643105 countsByYear W20096431052018 @default.
- W2009643105 countsByYear W20096431052019 @default.
- W2009643105 countsByYear W20096431052020 @default.
- W2009643105 countsByYear W20096431052021 @default.
- W2009643105 countsByYear W20096431052022 @default.
- W2009643105 countsByYear W20096431052023 @default.
- W2009643105 crossrefType "journal-article" @default.
- W2009643105 hasAuthorship W2009643105A5026636409 @default.
- W2009643105 hasAuthorship W2009643105A5037386793 @default.
- W2009643105 hasAuthorship W2009643105A5044132845 @default.
- W2009643105 hasAuthorship W2009643105A5078618171 @default.
- W2009643105 hasConcept C121332964 @default.
- W2009643105 hasConcept C147789679 @default.
- W2009643105 hasConcept C185592680 @default.
- W2009643105 hasConcept C191897082 @default.
- W2009643105 hasConcept C192562407 @default.
- W2009643105 hasConcept C2779870107 @default.
- W2009643105 hasConcept C88380143 @default.
- W2009643105 hasConcept C97355855 @default.
- W2009643105 hasConceptScore W2009643105C121332964 @default.
- W2009643105 hasConceptScore W2009643105C147789679 @default.
- W2009643105 hasConceptScore W2009643105C185592680 @default.
- W2009643105 hasConceptScore W2009643105C191897082 @default.
- W2009643105 hasConceptScore W2009643105C192562407 @default.
- W2009643105 hasConceptScore W2009643105C2779870107 @default.
- W2009643105 hasConceptScore W2009643105C88380143 @default.
- W2009643105 hasConceptScore W2009643105C97355855 @default.
- W2009643105 hasIssue "6" @default.
- W2009643105 hasLocation W20096431051 @default.
- W2009643105 hasOpenAccess W2009643105 @default.
- W2009643105 hasPrimaryLocation W20096431051 @default.
- W2009643105 hasRelatedWork W1989629536 @default.
- W2009643105 hasRelatedWork W2015079362 @default.
- W2009643105 hasRelatedWork W2024646389 @default.
- W2009643105 hasRelatedWork W2027657194 @default.
- W2009643105 hasRelatedWork W2055282179 @default.
- W2009643105 hasRelatedWork W2057097332 @default.
- W2009643105 hasRelatedWork W2063481456 @default.
- W2009643105 hasRelatedWork W2351507770 @default.
- W2009643105 hasRelatedWork W2363761931 @default.
- W2009643105 hasRelatedWork W3147519908 @default.
- W2009643105 hasVolume "61" @default.
- W2009643105 isParatext "false" @default.
- W2009643105 isRetracted "false" @default.
- W2009643105 magId "2009643105" @default.
- W2009643105 workType "article" @default.