Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009692456> ?p ?o ?g. }
- W2009692456 endingPage "305" @default.
- W2009692456 startingPage "275" @default.
- W2009692456 abstract "Let (W,S) be a finite Coxeter system and B = B(W) the corresponding Artin-Tits braid group. The natural map B → W has a canonical section r:W → B defined by the condition that if w ∈ W is written as a reduced expression in the generators in S then r(w)is the corresponding product taken in B. The main result of the present paper is as follows. Let C be a conjugacy class in W whose elements have order d say. Then there exists an element w ∈ C of minimal length in C such that r(w)d is a product of terms of the form r ( w I ) d I where the following hold: dI is a non-negative even integer, I runs over a sequence of subsets of S which decreases (which implies that the terms commute), and wI is the longest element in the corresponding parabolic subgroup of W. Such an element will be called a ‘good’ element in C. The result is proved case by case, using the classification of irreducible finite Coxeter groups and the knowledge of representatives of minimal length from the article by Geck and Pfeiffer in Advances in Math. 102 (1993) 79–94. The main application of this result concerns the problem of calculating character values of Iwahori-Hecke algebras. The generic Iwahori-Hecke algebra H associated with (W,S) is a quotient of the group algebra of B by the ideal generated by quadratic relations of the form (s-q)(s+1) where s ∈ S and q is an indeterminate. Thus, H is an algebra over a suitable field of rational functions in the variable ∼q. The above result implies that if w is a good element in the class C of W, then the eigen values of the standard basis element Tw of H in an irreducible representation of H are roots of unity times fractional powers of ∼q, and the fractional powers occurring can be explicitly determined from the ordinary character table of W. This result is used to compute the character table of the Iwahori-Hecke algebra of type E8. To determine the roots of unity, we use additional relations coming from the modular representation theory of ∼H. This completes the program of determining the character tables of Iwahori-Hecke algebras. 1991 Mathematics Subject Classification: 20C20, 20F36." @default.
- W2009692456 created "2016-06-24" @default.
- W2009692456 creator A5024460807 @default.
- W2009692456 creator A5037856999 @default.
- W2009692456 date "1997-03-01" @default.
- W2009692456 modified "2023-10-01" @default.
- W2009692456 title "‘Good’ Elements of Finite Coxeter Groups and Representations of Iwahori-Hecke Algebras" @default.
- W2009692456 doi "https://doi.org/10.1112/s0024611597000105" @default.
- W2009692456 hasPublicationYear "1997" @default.
- W2009692456 type Work @default.
- W2009692456 sameAs 2009692456 @default.
- W2009692456 citedByCount "24" @default.
- W2009692456 countsByYear W20096924562012 @default.
- W2009692456 countsByYear W20096924562013 @default.
- W2009692456 countsByYear W20096924562014 @default.
- W2009692456 countsByYear W20096924562015 @default.
- W2009692456 countsByYear W20096924562016 @default.
- W2009692456 countsByYear W20096924562017 @default.
- W2009692456 countsByYear W20096924562018 @default.
- W2009692456 countsByYear W20096924562021 @default.
- W2009692456 crossrefType "journal-article" @default.
- W2009692456 hasAuthorship W2009692456A5024460807 @default.
- W2009692456 hasAuthorship W2009692456A5037856999 @default.
- W2009692456 hasConcept C10138342 @default.
- W2009692456 hasConcept C111472728 @default.
- W2009692456 hasConcept C112698675 @default.
- W2009692456 hasConcept C114614502 @default.
- W2009692456 hasConcept C120047569 @default.
- W2009692456 hasConcept C136119220 @default.
- W2009692456 hasConcept C138885662 @default.
- W2009692456 hasConcept C140860697 @default.
- W2009692456 hasConcept C143669375 @default.
- W2009692456 hasConcept C144133560 @default.
- W2009692456 hasConcept C162324750 @default.
- W2009692456 hasConcept C17744445 @default.
- W2009692456 hasConcept C178790620 @default.
- W2009692456 hasConcept C182306322 @default.
- W2009692456 hasConcept C185592680 @default.
- W2009692456 hasConcept C199422724 @default.
- W2009692456 hasConcept C199539241 @default.
- W2009692456 hasConcept C200288055 @default.
- W2009692456 hasConcept C201064014 @default.
- W2009692456 hasConcept C202444582 @default.
- W2009692456 hasConcept C2524010 @default.
- W2009692456 hasConcept C2776639384 @default.
- W2009692456 hasConcept C2777404646 @default.
- W2009692456 hasConcept C2780129039 @default.
- W2009692456 hasConcept C2781280181 @default.
- W2009692456 hasConcept C2781311116 @default.
- W2009692456 hasConcept C33840335 @default.
- W2009692456 hasConcept C33923547 @default.
- W2009692456 hasConcept C87945829 @default.
- W2009692456 hasConcept C90673727 @default.
- W2009692456 hasConceptScore W2009692456C10138342 @default.
- W2009692456 hasConceptScore W2009692456C111472728 @default.
- W2009692456 hasConceptScore W2009692456C112698675 @default.
- W2009692456 hasConceptScore W2009692456C114614502 @default.
- W2009692456 hasConceptScore W2009692456C120047569 @default.
- W2009692456 hasConceptScore W2009692456C136119220 @default.
- W2009692456 hasConceptScore W2009692456C138885662 @default.
- W2009692456 hasConceptScore W2009692456C140860697 @default.
- W2009692456 hasConceptScore W2009692456C143669375 @default.
- W2009692456 hasConceptScore W2009692456C144133560 @default.
- W2009692456 hasConceptScore W2009692456C162324750 @default.
- W2009692456 hasConceptScore W2009692456C17744445 @default.
- W2009692456 hasConceptScore W2009692456C178790620 @default.
- W2009692456 hasConceptScore W2009692456C182306322 @default.
- W2009692456 hasConceptScore W2009692456C185592680 @default.
- W2009692456 hasConceptScore W2009692456C199422724 @default.
- W2009692456 hasConceptScore W2009692456C199539241 @default.
- W2009692456 hasConceptScore W2009692456C200288055 @default.
- W2009692456 hasConceptScore W2009692456C201064014 @default.
- W2009692456 hasConceptScore W2009692456C202444582 @default.
- W2009692456 hasConceptScore W2009692456C2524010 @default.
- W2009692456 hasConceptScore W2009692456C2776639384 @default.
- W2009692456 hasConceptScore W2009692456C2777404646 @default.
- W2009692456 hasConceptScore W2009692456C2780129039 @default.
- W2009692456 hasConceptScore W2009692456C2781280181 @default.
- W2009692456 hasConceptScore W2009692456C2781311116 @default.
- W2009692456 hasConceptScore W2009692456C33840335 @default.
- W2009692456 hasConceptScore W2009692456C33923547 @default.
- W2009692456 hasConceptScore W2009692456C87945829 @default.
- W2009692456 hasConceptScore W2009692456C90673727 @default.
- W2009692456 hasIssue "2" @default.
- W2009692456 hasLocation W20096924561 @default.
- W2009692456 hasOpenAccess W2009692456 @default.
- W2009692456 hasPrimaryLocation W20096924561 @default.
- W2009692456 hasRelatedWork W1569820777 @default.
- W2009692456 hasRelatedWork W2009692456 @default.
- W2009692456 hasRelatedWork W2129874298 @default.
- W2009692456 hasRelatedWork W2542011630 @default.
- W2009692456 hasRelatedWork W2550330308 @default.
- W2009692456 hasRelatedWork W2949795704 @default.
- W2009692456 hasRelatedWork W2963299639 @default.
- W2009692456 hasRelatedWork W2963940453 @default.
- W2009692456 hasRelatedWork W4225976466 @default.
- W2009692456 hasRelatedWork W2181316879 @default.
- W2009692456 hasVolume "74" @default.