Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009726023> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2009726023 abstract "Feature Selection (FS) aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. In the supervised FS methods, various feature subsets are evaluated using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. In this paper, a novel unsupervised feature selection in mammogram image, using tolerance rough set based quick reduct, is proposed. A typical mammogram image processing system generally consists of mammogram image acquisition, pre-processing of image segmentation, feature extraction, feature selection and classification. The proposed method is used to select features from the extracted features and the method is compared with existing rough set based supervised feature selection methods. The proposed method is evaluated through classification algorithms in WEKA." @default.
- W2009726023 created "2016-06-24" @default.
- W2009726023 creator A5064826010 @default.
- W2009726023 creator A5079604211 @default.
- W2009726023 date "2012-11-01" @default.
- W2009726023 modified "2023-09-25" @default.
- W2009726023 title "Unsupervised Feature Selection in Digital Mammogram Image Using Tolerance Rough Set Based Quick Reduct" @default.
- W2009726023 cites W132901438 @default.
- W2009726023 cites W1591618909 @default.
- W2009726023 cites W1810004342 @default.
- W2009726023 cites W1966166317 @default.
- W2009726023 cites W1986513684 @default.
- W2009726023 cites W1986923534 @default.
- W2009726023 cites W2020854598 @default.
- W2009726023 cites W2026395347 @default.
- W2009726023 cites W2043109337 @default.
- W2009726023 cites W2052708119 @default.
- W2009726023 cites W2106764995 @default.
- W2009726023 cites W2133462743 @default.
- W2009726023 cites W2140490307 @default.
- W2009726023 cites W2154404668 @default.
- W2009726023 cites W2161327493 @default.
- W2009726023 cites W2606684948 @default.
- W2009726023 cites W4246796078 @default.
- W2009726023 doi "https://doi.org/10.1109/cicn.2012.202" @default.
- W2009726023 hasPublicationYear "2012" @default.
- W2009726023 type Work @default.
- W2009726023 sameAs 2009726023 @default.
- W2009726023 citedByCount "5" @default.
- W2009726023 countsByYear W20097260232013 @default.
- W2009726023 countsByYear W20097260232014 @default.
- W2009726023 countsByYear W20097260232016 @default.
- W2009726023 crossrefType "proceedings-article" @default.
- W2009726023 hasAuthorship W2009726023A5064826010 @default.
- W2009726023 hasAuthorship W2009726023A5079604211 @default.
- W2009726023 hasConcept C111012933 @default.
- W2009726023 hasConcept C124101348 @default.
- W2009726023 hasConcept C138885662 @default.
- W2009726023 hasConcept C148483581 @default.
- W2009726023 hasConcept C153180895 @default.
- W2009726023 hasConcept C154945302 @default.
- W2009726023 hasConcept C2776401178 @default.
- W2009726023 hasConcept C41008148 @default.
- W2009726023 hasConcept C41895202 @default.
- W2009726023 hasConcept C52622490 @default.
- W2009726023 hasConcept C69177213 @default.
- W2009726023 hasConceptScore W2009726023C111012933 @default.
- W2009726023 hasConceptScore W2009726023C124101348 @default.
- W2009726023 hasConceptScore W2009726023C138885662 @default.
- W2009726023 hasConceptScore W2009726023C148483581 @default.
- W2009726023 hasConceptScore W2009726023C153180895 @default.
- W2009726023 hasConceptScore W2009726023C154945302 @default.
- W2009726023 hasConceptScore W2009726023C2776401178 @default.
- W2009726023 hasConceptScore W2009726023C41008148 @default.
- W2009726023 hasConceptScore W2009726023C41895202 @default.
- W2009726023 hasConceptScore W2009726023C52622490 @default.
- W2009726023 hasConceptScore W2009726023C69177213 @default.
- W2009726023 hasLocation W20097260231 @default.
- W2009726023 hasOpenAccess W2009726023 @default.
- W2009726023 hasPrimaryLocation W20097260231 @default.
- W2009726023 hasRelatedWork W2009726023 @default.
- W2009726023 hasRelatedWork W2047235170 @default.
- W2009726023 hasRelatedWork W2117389543 @default.
- W2009726023 hasRelatedWork W2374000300 @default.
- W2009726023 hasRelatedWork W2375301348 @default.
- W2009726023 hasRelatedWork W2521521467 @default.
- W2009726023 hasRelatedWork W2546942002 @default.
- W2009726023 hasRelatedWork W2566496375 @default.
- W2009726023 hasRelatedWork W4282830075 @default.
- W2009726023 hasRelatedWork W2345184372 @default.
- W2009726023 isParatext "false" @default.
- W2009726023 isRetracted "false" @default.
- W2009726023 magId "2009726023" @default.
- W2009726023 workType "article" @default.