Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009778307> ?p ?o ?g. }
- W2009778307 endingPage "555" @default.
- W2009778307 startingPage "550" @default.
- W2009778307 abstract "Polyurethane foam (PUF) disk passive air samplers were evaluated under field conditionsto assessthe effect of temperature and wind speed on the sampling rate for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs). Passive samples integrated over 28-day periods were compared to high-volume air samples collected for 24 h, every 7 days. This provided a large data set of 42 passive sampling events and 168 high-volume samples over a 3-year period, starting in October 2003. Average PUF disk sampling rates for gas-phase chemicals was approximately 7 m3 d(-1) and comparable to previous reports. The high molecular weight PAHs, which are mainly particle-bound, experienced much lower sampling rates of approximately 0.7 m3 d(-1). This small rate was attributed to the ability of the sampling chamber to filter out coarse particles with only the fine/ultrafine fraction capable of penetration and collection on the PUF disk. Passive sampler-derived data were converted to equivalent air volumes (V(EQ), m3) using the high-volume air measurement results. Correlations of V(EQ) against meteorological data collected on-site yielded different behavior for gas- and particle-associated compounds. For gas-phase chemicals, sampling rates varied by about a factor of 2 with temperature and wind speed. The higher sampling rates at colder temperatures were explained bythe wind effecton sampling rates. Temperature and wind were strongly correlated with the greatest winds at coldertemperatures. Mainly particle-phase compounds (namely, the high molecular weight PAHs) had more variable sampling rates. Sampling rates increased greatly atwarmertemperatures as the high molecular weight PAH burden was shifted toward the gas phase and subject to higher gas-phase sampling rates. At colder temperatures, sampling rates were reduced as the partitioning of the high molecular weight PAHs was shifted toward the particle phase. The observed wind effect on sampling for the particle-phase compounds is believed to be tied to this strong temperature dependence on phase partitioning and hence sampling rate. For purposes of comparing passive sampler derived data for persistent organic pollutants, the factor of 2 variability observed for mainly gas-phase compounds is deemed to be acceptable in many instances for semiquantitative analysis. Depuration compounds may be used to improve accuracy and provide site-specific sampling rates, although this adds a level of complexity to the analysis. More research is needed to develop and test passive air samplers for particle-associated chemicals." @default.
- W2009778307 created "2016-06-24" @default.
- W2009778307 creator A5000101838 @default.
- W2009778307 creator A5063847262 @default.
- W2009778307 creator A5083520030 @default.
- W2009778307 creator A5087621561 @default.
- W2009778307 date "2007-12-12" @default.
- W2009778307 modified "2023-10-18" @default.
- W2009778307 title "Assessing the Influence of Meteorological Parameters on the Performance of Polyurethane Foam-Based Passive Air Samplers" @default.
- W2009778307 cites W1901139591 @default.
- W2009778307 cites W1969073300 @default.
- W2009778307 cites W1972144682 @default.
- W2009778307 cites W1987136216 @default.
- W2009778307 cites W1991392054 @default.
- W2009778307 cites W1999967899 @default.
- W2009778307 cites W2002767416 @default.
- W2009778307 cites W2002996849 @default.
- W2009778307 cites W2010764207 @default.
- W2009778307 cites W2013327267 @default.
- W2009778307 cites W2014616228 @default.
- W2009778307 cites W2015049269 @default.
- W2009778307 cites W2017433892 @default.
- W2009778307 cites W2019068321 @default.
- W2009778307 cites W2021447318 @default.
- W2009778307 cites W2026723427 @default.
- W2009778307 cites W2036223273 @default.
- W2009778307 cites W2047144911 @default.
- W2009778307 cites W2047736596 @default.
- W2009778307 cites W2049372047 @default.
- W2009778307 cites W2053743835 @default.
- W2009778307 cites W2056067010 @default.
- W2009778307 cites W2057873431 @default.
- W2009778307 cites W2067439119 @default.
- W2009778307 cites W2077036594 @default.
- W2009778307 cites W2087665607 @default.
- W2009778307 cites W2095162154 @default.
- W2009778307 cites W2112617685 @default.
- W2009778307 cites W2113389917 @default.
- W2009778307 cites W2163313750 @default.
- W2009778307 doi "https://doi.org/10.1021/es072098o" @default.
- W2009778307 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18284161" @default.
- W2009778307 hasPublicationYear "2007" @default.
- W2009778307 type Work @default.
- W2009778307 sameAs 2009778307 @default.
- W2009778307 citedByCount "174" @default.
- W2009778307 countsByYear W20097783072012 @default.
- W2009778307 countsByYear W20097783072013 @default.
- W2009778307 countsByYear W20097783072014 @default.
- W2009778307 countsByYear W20097783072015 @default.
- W2009778307 countsByYear W20097783072016 @default.
- W2009778307 countsByYear W20097783072017 @default.
- W2009778307 countsByYear W20097783072018 @default.
- W2009778307 countsByYear W20097783072019 @default.
- W2009778307 countsByYear W20097783072020 @default.
- W2009778307 countsByYear W20097783072021 @default.
- W2009778307 countsByYear W20097783072022 @default.
- W2009778307 countsByYear W20097783072023 @default.
- W2009778307 crossrefType "journal-article" @default.
- W2009778307 hasAuthorship W2009778307A5000101838 @default.
- W2009778307 hasAuthorship W2009778307A5063847262 @default.
- W2009778307 hasAuthorship W2009778307A5083520030 @default.
- W2009778307 hasAuthorship W2009778307A5087621561 @default.
- W2009778307 hasConcept C106131492 @default.
- W2009778307 hasConcept C107872376 @default.
- W2009778307 hasConcept C111368507 @default.
- W2009778307 hasConcept C113196181 @default.
- W2009778307 hasConcept C121332964 @default.
- W2009778307 hasConcept C127313418 @default.
- W2009778307 hasConcept C140779682 @default.
- W2009778307 hasConcept C147789679 @default.
- W2009778307 hasConcept C153294291 @default.
- W2009778307 hasConcept C161067210 @default.
- W2009778307 hasConcept C165838908 @default.
- W2009778307 hasConcept C178790620 @default.
- W2009778307 hasConcept C185592680 @default.
- W2009778307 hasConcept C187530423 @default.
- W2009778307 hasConcept C20556612 @default.
- W2009778307 hasConcept C24245907 @default.
- W2009778307 hasConcept C2778517922 @default.
- W2009778307 hasConcept C2779578285 @default.
- W2009778307 hasConcept C3020546820 @default.
- W2009778307 hasConcept C31972630 @default.
- W2009778307 hasConcept C39432304 @default.
- W2009778307 hasConcept C41008148 @default.
- W2009778307 hasConcept C62520636 @default.
- W2009778307 hasConcept C91586092 @default.
- W2009778307 hasConcept C97355855 @default.
- W2009778307 hasConceptScore W2009778307C106131492 @default.
- W2009778307 hasConceptScore W2009778307C107872376 @default.
- W2009778307 hasConceptScore W2009778307C111368507 @default.
- W2009778307 hasConceptScore W2009778307C113196181 @default.
- W2009778307 hasConceptScore W2009778307C121332964 @default.
- W2009778307 hasConceptScore W2009778307C127313418 @default.
- W2009778307 hasConceptScore W2009778307C140779682 @default.
- W2009778307 hasConceptScore W2009778307C147789679 @default.
- W2009778307 hasConceptScore W2009778307C153294291 @default.
- W2009778307 hasConceptScore W2009778307C161067210 @default.
- W2009778307 hasConceptScore W2009778307C165838908 @default.