Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009842141> ?p ?o ?g. }
- W2009842141 endingPage "485" @default.
- W2009842141 startingPage "461" @default.
- W2009842141 abstract "We present an idealized model simulating the coupled evolution of the distributions of multispecies shock-accelerated energetic ions and interplanetary Alfvén waves in gradual solar energetic particle (SEP) events. Particle pitch-angle diffusion coefficients are expressed in terms of wave intensities, and wave growth rates in terms of momentum gradients of SEP distributions, by the same quasilinear theory augmented with resonance broadening. The model takes into consideration various physical processes: for SEPs, particle motion, magnetic focusing, scattering by Alfvén waves, solar wind convection, and adiabatic deceleration; for the waves, WKB transport and amplification by streaming SEPs. Shock acceleration is heuristically represented by continuous injection of prescribed spectra of SEPs at a moving shock front. We show the model predictions for two contrasting sets of SEP source spectra, fast weakening and softening in one case and long lasting and hard in the other. The results presented include concurrent time histories of multispecies SEP intensities and elemental abundance ratios, as well as sequential snapshots of the following: SEP intensity energy spectra, Alfvén wave spectra, particle mean free paths as functions of rigidity, and spatial profiles of SEP intensities and mean free paths. Wave growth plays a key role in both cases, although the magnitude of the wave growth differs greatly, and quite different SEP abundance variations are obtained. In these simulations, the maximum wave growth rate is large, but small relative to the wave frequency, and everywhere the total wave magnetic energy density remains small relative to that of the background magnetic field. The simulations show that, as the energetic protons stream outward, they rapidly amplify the ambient Alfvén waves, by several orders of magnitude in the inner heliosphere. Energetic minor ions find themselves traveling through resonant Alfvén waves previously amplified by higher velocity protons. The nonuniformly growing wave spectra alter the rigidity dependence of particle scattering, resulting in complex time variations of SEP abundances at large distances from the Sun. The greatly amplified waves travel outward in an expanding and weakening shell, creating an expanding and falling reservoir of SEPs with flat spatial intensity profiles behind, while in and beyond the shell the intensities drop steeply. The wave-particle resonance relation dynamically links the evolving characteristics of the SEP and Alfvén wave distributions in this new mode of SEP transport. We conclude that wave amplification, the counterpart to the scattering of streaming particles required by energy conservation, plays an essential role in the transport of SEPs in gradual SEP events. The steep proton-amplified wave spectra just upstream of the shock suggest that they may also be important in determining the elemental abundances of shock-accelerated SEP sources." @default.
- W2009842141 created "2016-06-24" @default.
- W2009842141 creator A5006148161 @default.
- W2009842141 creator A5021126711 @default.
- W2009842141 creator A5082856675 @default.
- W2009842141 date "2003-07-01" @default.
- W2009842141 modified "2023-10-17" @default.
- W2009842141 title "Modeling Shock‐accelerated Solar Energetic Particles Coupled to Interplanetary Alfven Waves" @default.
- W2009842141 cites W1499480006 @default.
- W2009842141 cites W1517037698 @default.
- W2009842141 cites W1558634311 @default.
- W2009842141 cites W1559297384 @default.
- W2009842141 cites W1601521260 @default.
- W2009842141 cites W1615913349 @default.
- W2009842141 cites W1640019987 @default.
- W2009842141 cites W185363854 @default.
- W2009842141 cites W1963701191 @default.
- W2009842141 cites W1966108843 @default.
- W2009842141 cites W1966878267 @default.
- W2009842141 cites W1967263982 @default.
- W2009842141 cites W1968178824 @default.
- W2009842141 cites W1976038152 @default.
- W2009842141 cites W1977695197 @default.
- W2009842141 cites W1978572776 @default.
- W2009842141 cites W1983072771 @default.
- W2009842141 cites W1984427774 @default.
- W2009842141 cites W1987570402 @default.
- W2009842141 cites W1988615220 @default.
- W2009842141 cites W1989188759 @default.
- W2009842141 cites W1989756559 @default.
- W2009842141 cites W1990301833 @default.
- W2009842141 cites W1990830958 @default.
- W2009842141 cites W1991916369 @default.
- W2009842141 cites W1993777780 @default.
- W2009842141 cites W1994560873 @default.
- W2009842141 cites W2002490782 @default.
- W2009842141 cites W2006206882 @default.
- W2009842141 cites W2010483624 @default.
- W2009842141 cites W2011822443 @default.
- W2009842141 cites W2015222296 @default.
- W2009842141 cites W2016235796 @default.
- W2009842141 cites W2018827598 @default.
- W2009842141 cites W2021661174 @default.
- W2009842141 cites W2029125020 @default.
- W2009842141 cites W2029872128 @default.
- W2009842141 cites W2030794404 @default.
- W2009842141 cites W2031957079 @default.
- W2009842141 cites W2032796170 @default.
- W2009842141 cites W2040006068 @default.
- W2009842141 cites W2041483501 @default.
- W2009842141 cites W2043742687 @default.
- W2009842141 cites W2044577747 @default.
- W2009842141 cites W2048843987 @default.
- W2009842141 cites W2054635596 @default.
- W2009842141 cites W2054796185 @default.
- W2009842141 cites W2055803869 @default.
- W2009842141 cites W2058639030 @default.
- W2009842141 cites W2060087387 @default.
- W2009842141 cites W2064716181 @default.
- W2009842141 cites W2071538988 @default.
- W2009842141 cites W2076004821 @default.
- W2009842141 cites W2082478865 @default.
- W2009842141 cites W2083328739 @default.
- W2009842141 cites W2084197403 @default.
- W2009842141 cites W2084515563 @default.
- W2009842141 cites W2085506296 @default.
- W2009842141 cites W2087770561 @default.
- W2009842141 cites W2087817836 @default.
- W2009842141 cites W2090618682 @default.
- W2009842141 cites W2094779132 @default.
- W2009842141 cites W2095295189 @default.
- W2009842141 cites W2119405834 @default.
- W2009842141 cites W2121217483 @default.
- W2009842141 cites W2128001627 @default.
- W2009842141 cites W2155170708 @default.
- W2009842141 cites W2158210405 @default.
- W2009842141 cites W3101472739 @default.
- W2009842141 cites W4235323433 @default.
- W2009842141 doi "https://doi.org/10.1086/375293" @default.
- W2009842141 hasPublicationYear "2003" @default.
- W2009842141 type Work @default.
- W2009842141 sameAs 2009842141 @default.
- W2009842141 citedByCount "161" @default.
- W2009842141 countsByYear W20098421412012 @default.
- W2009842141 countsByYear W20098421412013 @default.
- W2009842141 countsByYear W20098421412014 @default.
- W2009842141 countsByYear W20098421412015 @default.
- W2009842141 countsByYear W20098421412016 @default.
- W2009842141 countsByYear W20098421412017 @default.
- W2009842141 countsByYear W20098421412018 @default.
- W2009842141 countsByYear W20098421412019 @default.
- W2009842141 countsByYear W20098421412020 @default.
- W2009842141 countsByYear W20098421412021 @default.
- W2009842141 countsByYear W20098421412022 @default.
- W2009842141 countsByYear W20098421412023 @default.
- W2009842141 crossrefType "journal-article" @default.
- W2009842141 hasAuthorship W2009842141A5006148161 @default.
- W2009842141 hasAuthorship W2009842141A5021126711 @default.