Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009847912> ?p ?o ?g. }
- W2009847912 endingPage "69" @default.
- W2009847912 startingPage "54" @default.
- W2009847912 abstract "The potential deleterious geochemical interactions of clay with cement/concrete may provide a constraint on the use of the latter material in deep geological disposal facilities for radioactive wastes. Consequently, it is important to have a fundamental understanding of these interactions to be able to assess their likely impact over the long timescales appropriate to the isolation of radioactive wastes from the human environment. Here, a laboratory experiment investigating the effects of cementitious water diffusing through bentonite has been simulated using a coupled reactive-transport geochemical modelling code. The modelling study was carried out before the results of the experiments were available, as an exercise in ‘blind’ modelling. A sensitivity study was carried out to investigate uncertainties associated with a number of input parameters, such as the precise nature of kinetic and ion-exchange reactions, diffusion coefficients, pore water composition, and montmorillonite dissolution models. The experiments used two types of fluid; one consisting of Ca(OH)2 showed little mineralogical alteration, which was predicted by the simulations. A high pH K–Na–OH-based water however, caused alteration (pore blocking by hydrotalcite, gibbsite and brucite growth) to a depth of ∼ 2 mm in the bentonite after a period of 1 yr. Experimental evidence showed that ion exchange of Mg-montmorillonite to K-montmorillonite was not confined to this thin region however, and was found to extend throughout the whole of the bentonite sample. The pore blocking by mineral precipitation and movement of ion exchange fronts through the bentonite were accurately simulated by the model. The choice of dissolution model for montmorillonite played an important role in the outcome of the simulations. Of the cases considered in the sensitivity study, that employing the so-called ‘Yamaguchi model’ was the best match, exhibiting all the main characteristics of the experiment, including pore blocking, brucite precipitation, minor montmorillonite dissolution, and the replacement of Mg- by K-montmorillonite throughout the length of the bentonite. Other factors (mineral growth rates, the smectite surface area, and the inclusion of trace minerals in the bentonite mineralogy) had a smaller impact (across the range of variability studied) upon the simulation results over the timescales considered. However, extrapolation of the results of the experiments and modelling to the timescales of interest for the isolation of radioactive wastes will require more realistic modelling of secondary mineral growth rates in the bentonite alteration process." @default.
- W2009847912 created "2016-06-24" @default.
- W2009847912 creator A5000000128 @default.
- W2009847912 creator A5006279142 @default.
- W2009847912 creator A5021956804 @default.
- W2009847912 creator A5055471558 @default.
- W2009847912 creator A5073147114 @default.
- W2009847912 creator A5091379478 @default.
- W2009847912 date "2009-06-01" @default.
- W2009847912 modified "2023-09-26" @default.
- W2009847912 title "Reaction and diffusion of cementitious water in bentonite: Results of ‘blind’ modelling" @default.
- W2009847912 cites W1965163961 @default.
- W2009847912 cites W1977828249 @default.
- W2009847912 cites W1982741881 @default.
- W2009847912 cites W1988153865 @default.
- W2009847912 cites W2001083612 @default.
- W2009847912 cites W2001816908 @default.
- W2009847912 cites W2008241046 @default.
- W2009847912 cites W2012588765 @default.
- W2009847912 cites W2014099813 @default.
- W2009847912 cites W2014997024 @default.
- W2009847912 cites W2015914816 @default.
- W2009847912 cites W2017415904 @default.
- W2009847912 cites W2026759281 @default.
- W2009847912 cites W2036259131 @default.
- W2009847912 cites W2037671074 @default.
- W2009847912 cites W2051505685 @default.
- W2009847912 cites W2055670177 @default.
- W2009847912 cites W2061068900 @default.
- W2009847912 cites W2066843635 @default.
- W2009847912 cites W2069644717 @default.
- W2009847912 cites W2070155685 @default.
- W2009847912 cites W2080955092 @default.
- W2009847912 cites W2081261395 @default.
- W2009847912 cites W2093663585 @default.
- W2009847912 cites W2106087356 @default.
- W2009847912 cites W2123877815 @default.
- W2009847912 cites W2134971514 @default.
- W2009847912 cites W2313144619 @default.
- W2009847912 cites W2334826360 @default.
- W2009847912 cites W2337748237 @default.
- W2009847912 cites W2342419025 @default.
- W2009847912 doi "https://doi.org/10.1016/j.clay.2009.03.007" @default.
- W2009847912 hasPublicationYear "2009" @default.
- W2009847912 type Work @default.
- W2009847912 sameAs 2009847912 @default.
- W2009847912 citedByCount "37" @default.
- W2009847912 countsByYear W20098479122012 @default.
- W2009847912 countsByYear W20098479122013 @default.
- W2009847912 countsByYear W20098479122014 @default.
- W2009847912 countsByYear W20098479122015 @default.
- W2009847912 countsByYear W20098479122016 @default.
- W2009847912 countsByYear W20098479122017 @default.
- W2009847912 countsByYear W20098479122018 @default.
- W2009847912 countsByYear W20098479122019 @default.
- W2009847912 countsByYear W20098479122020 @default.
- W2009847912 countsByYear W20098479122021 @default.
- W2009847912 countsByYear W20098479122022 @default.
- W2009847912 countsByYear W20098479122023 @default.
- W2009847912 crossrefType "journal-article" @default.
- W2009847912 hasAuthorship W2009847912A5000000128 @default.
- W2009847912 hasAuthorship W2009847912A5006279142 @default.
- W2009847912 hasAuthorship W2009847912A5021956804 @default.
- W2009847912 hasAuthorship W2009847912A5055471558 @default.
- W2009847912 hasAuthorship W2009847912A5073147114 @default.
- W2009847912 hasAuthorship W2009847912A5091379478 @default.
- W2009847912 hasConcept C107054158 @default.
- W2009847912 hasConcept C117760992 @default.
- W2009847912 hasConcept C121332964 @default.
- W2009847912 hasConcept C127313418 @default.
- W2009847912 hasConcept C127413603 @default.
- W2009847912 hasConcept C13965031 @default.
- W2009847912 hasConcept C145148216 @default.
- W2009847912 hasConcept C153294291 @default.
- W2009847912 hasConcept C159985019 @default.
- W2009847912 hasConcept C178790620 @default.
- W2009847912 hasConcept C185592680 @default.
- W2009847912 hasConcept C187320778 @default.
- W2009847912 hasConcept C192562407 @default.
- W2009847912 hasConcept C199289684 @default.
- W2009847912 hasConcept C2777515222 @default.
- W2009847912 hasConcept C2777979977 @default.
- W2009847912 hasConcept C2779666059 @default.
- W2009847912 hasConcept C40212044 @default.
- W2009847912 hasConcept C42360764 @default.
- W2009847912 hasConcept C523993062 @default.
- W2009847912 hasConcept C69357855 @default.
- W2009847912 hasConcept C88380143 @default.
- W2009847912 hasConcept C89690796 @default.
- W2009847912 hasConcept C97355855 @default.
- W2009847912 hasConceptScore W2009847912C107054158 @default.
- W2009847912 hasConceptScore W2009847912C117760992 @default.
- W2009847912 hasConceptScore W2009847912C121332964 @default.
- W2009847912 hasConceptScore W2009847912C127313418 @default.
- W2009847912 hasConceptScore W2009847912C127413603 @default.
- W2009847912 hasConceptScore W2009847912C13965031 @default.
- W2009847912 hasConceptScore W2009847912C145148216 @default.
- W2009847912 hasConceptScore W2009847912C153294291 @default.