Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009872036> ?p ?o ?g. }
- W2009872036 endingPage "230" @default.
- W2009872036 startingPage "173" @default.
- W2009872036 abstract "The topic “magnetic impurities in metals” is certainly one of the most studied problems of the solid-state physics in the last years. The interest toward this argument relies on the fact that the interaction between the magnetic moment of the impurities and the conduction electrons of the host metal, is responsible for a large variety of physical phenomena. The simplest model that captures the essential physics of the systems previously mentioned is certainly the periodic Anderson model. This model appeared in the literature for the first time in 1961 in a paper by P.W. Anderson as an attempt to describe in a simplified way the effects of correlations for d-electrons in transition metals. The Hamiltonian of this model cannot be exactly solved in general. Nevertheless, exact results are known in some special cases. The argument of this review is the discussion of some of these exact solutions and the symmetry properties exhibited by the microscopic model Hamiltonian. The review has been organized in such a way that an introductory material is presented to make the main points intelligible to a non-specialist reader even though very recent developments on this topic are also presented. In particular, we will discuss special solutions of the model, holding in any dimension, when one of the interacting couplings of the model vanishes. We want to mention that, in spite of the crudeness of the models so derived, some physical insights can be derived from these simplified versions of the Anderson Hamiltonian. The impossibility of ordering, magnetic or superconducting, will be also discussed. These results hold for any temperature, electron filling and any strength of the parameters of the model,but are confined to low-dimensional cases and are based on the application of the Bogoliubov's inequality. It is also discussed the T=0 version of the Bogoliubov's inequality and it is shown that quantum effects disorder the system, at least in one dimension. Recent studies of the Anderson model showing exact solutions holding for specific values of the microscopic parameters and/or for special filling will be also analyzed. These results are based on the application of spin reflection positivity and on symmetry properties exhibited by Anderson Hamiltonian. Some results in the U=∞ limit are also presented; namely, we discuss the conditions under which a ferromagnetic ground state is established in one dimension when the number of electrons exceeds by one the number of sites and then, for decorated lattices, we derive the ground-state energy and we construct the corresponding eigenstate. Finally, a simple theorem on the total momentum of the ground state of the symmetric version of the Hamiltonian is presented." @default.
- W2009872036 created "2016-06-24" @default.
- W2009872036 creator A5080375377 @default.
- W2009872036 date "2006-08-01" @default.
- W2009872036 modified "2023-10-12" @default.
- W2009872036 title "The periodic Anderson model: Symmetry-based results and some exact solutions" @default.
- W2009872036 cites W1488655027 @default.
- W2009872036 cites W1516397923 @default.
- W2009872036 cites W1765363842 @default.
- W2009872036 cites W1964754261 @default.
- W2009872036 cites W1965846654 @default.
- W2009872036 cites W1969641243 @default.
- W2009872036 cites W1970263889 @default.
- W2009872036 cites W1975786346 @default.
- W2009872036 cites W1976189597 @default.
- W2009872036 cites W1979092504 @default.
- W2009872036 cites W1979278284 @default.
- W2009872036 cites W1981942409 @default.
- W2009872036 cites W1981953826 @default.
- W2009872036 cites W1982408041 @default.
- W2009872036 cites W1982932653 @default.
- W2009872036 cites W1983215475 @default.
- W2009872036 cites W1986952155 @default.
- W2009872036 cites W1987699452 @default.
- W2009872036 cites W1990783727 @default.
- W2009872036 cites W1991044834 @default.
- W2009872036 cites W1991336697 @default.
- W2009872036 cites W1991510450 @default.
- W2009872036 cites W1991687724 @default.
- W2009872036 cites W1994581252 @default.
- W2009872036 cites W1996133706 @default.
- W2009872036 cites W2001433058 @default.
- W2009872036 cites W2002099180 @default.
- W2009872036 cites W2002259149 @default.
- W2009872036 cites W2002435891 @default.
- W2009872036 cites W2002659277 @default.
- W2009872036 cites W2004168222 @default.
- W2009872036 cites W2004281412 @default.
- W2009872036 cites W2004580699 @default.
- W2009872036 cites W2004728558 @default.
- W2009872036 cites W2004824986 @default.
- W2009872036 cites W2006524396 @default.
- W2009872036 cites W2006689018 @default.
- W2009872036 cites W2007794153 @default.
- W2009872036 cites W2008184307 @default.
- W2009872036 cites W2008317504 @default.
- W2009872036 cites W2010681431 @default.
- W2009872036 cites W2012012222 @default.
- W2009872036 cites W2012304940 @default.
- W2009872036 cites W2013669996 @default.
- W2009872036 cites W2016815752 @default.
- W2009872036 cites W2017268105 @default.
- W2009872036 cites W2017339030 @default.
- W2009872036 cites W2018158342 @default.
- W2009872036 cites W2018165346 @default.
- W2009872036 cites W2019037726 @default.
- W2009872036 cites W2019378665 @default.
- W2009872036 cites W2020210763 @default.
- W2009872036 cites W2021910243 @default.
- W2009872036 cites W2021993538 @default.
- W2009872036 cites W2022327385 @default.
- W2009872036 cites W2023097835 @default.
- W2009872036 cites W2023769946 @default.
- W2009872036 cites W2026367100 @default.
- W2009872036 cites W2027321662 @default.
- W2009872036 cites W2034536525 @default.
- W2009872036 cites W2037083202 @default.
- W2009872036 cites W2038418184 @default.
- W2009872036 cites W2038507704 @default.
- W2009872036 cites W2038654481 @default.
- W2009872036 cites W2038820595 @default.
- W2009872036 cites W2041081285 @default.
- W2009872036 cites W2041450077 @default.
- W2009872036 cites W2043042538 @default.
- W2009872036 cites W2043458047 @default.
- W2009872036 cites W2044004380 @default.
- W2009872036 cites W2044159160 @default.
- W2009872036 cites W2045366239 @default.
- W2009872036 cites W2051553074 @default.
- W2009872036 cites W2051671551 @default.
- W2009872036 cites W2055534321 @default.
- W2009872036 cites W2058865077 @default.
- W2009872036 cites W2058990947 @default.
- W2009872036 cites W2059153726 @default.
- W2009872036 cites W2060447191 @default.
- W2009872036 cites W2060488279 @default.
- W2009872036 cites W2060775030 @default.
- W2009872036 cites W2063145657 @default.
- W2009872036 cites W2063216233 @default.
- W2009872036 cites W2064767425 @default.
- W2009872036 cites W2066009637 @default.
- W2009872036 cites W2066512281 @default.
- W2009872036 cites W2066642583 @default.
- W2009872036 cites W2067202536 @default.
- W2009872036 cites W2068555968 @default.
- W2009872036 cites W2072262991 @default.
- W2009872036 cites W2073588342 @default.
- W2009872036 cites W2073603066 @default.