Matches in SemOpenAlex for { <https://semopenalex.org/work/W2009883947> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2009883947 endingPage "246" @default.
- W2009883947 startingPage "211" @default.
- W2009883947 abstract "In this paper the nonlinear evolution of two-dimensional shear-flow instabilities near the ocean surface is studied. The approach is numerical, through direct simulation of the incompressible Euler equations subject to the dynamic and kinematic boundary conditions at the free surface. The problem is formulated using boundary-fitted coordinates, and for the numerical simulation a spectral spatial discretization method is used involving Fourier modes in the streamwise direction and Chebyshev polynomials along the depth. An explicit integration is performed in time using a splitting scheme. The initial state of the flow is assumed to be a known parallel shear flow with a flat free surface. A perturbation having the form of the fastest growing linear instability mode of the shear flow is then introduced, and its subsequent evolution is followed numerically. According to linear theory, a shear flow with a free surface has two linear instability modes, corresponding to different branches of the dispersion relation: Branch I, at low wavenumbers; and Branch II, at high wavenumbers for low Froude numbers, and low wavenumbers for high Froude numbers. Our simulations show that the two branches have a distinctly different nonlinear evolution. Branch I : At low Froude numbers, Branch I instability waves develop strong oval-shaped vortices immediately below the ocean surface. The induced velocity field presents a very sharp shear near the crest of the free-surface elevation in the horizontal direction. As a result, the free-surface wave acquires steep slopes, while its amplitude remains very small, and eventually the computer code crashes suggesting that the wave will break. Branch II : At low Froude numbers, Branch II instability waves develop weak vortices with dimensions considerably smaller than their distance from the ocean surface. The induced velocity field at the ocean surface varies smoothly in space, and the free-surface elevation takes the form of a propagating wave. At high Froude numbers, however, the growing rates of the Branch II instability waves increase, resulting in the formation of strong vortices. The free surface reaches a large amplitude, and strong vertical velocity shear develops at the free surface. The computer code eventually crashes suggesting that the wave will break. This behaviour of the ocean surface persists even in the infinite-Froude-number limit. It is concluded that the free-surface manifestation of shear-flow instabilities acquires the form of a propagating water wave only if the induced velocity field at the ocean surface varies smoothly along the direction of propagation." @default.
- W2009883947 created "2016-06-24" @default.
- W2009883947 creator A5021690094 @default.
- W2009883947 creator A5051387107 @default.
- W2009883947 date "1994-02-10" @default.
- W2009883947 modified "2023-09-26" @default.
- W2009883947 title "Nonlinear interaction of shear flow with a free surface" @default.
- W2009883947 cites W1912930600 @default.
- W2009883947 cites W2148155099 @default.
- W2009883947 doi "https://doi.org/10.1017/s0022112094003496" @default.
- W2009883947 hasPublicationYear "1994" @default.
- W2009883947 type Work @default.
- W2009883947 sameAs 2009883947 @default.
- W2009883947 citedByCount "32" @default.
- W2009883947 countsByYear W20098839472012 @default.
- W2009883947 countsByYear W20098839472013 @default.
- W2009883947 countsByYear W20098839472017 @default.
- W2009883947 countsByYear W20098839472019 @default.
- W2009883947 countsByYear W20098839472020 @default.
- W2009883947 crossrefType "journal-article" @default.
- W2009883947 hasAuthorship W2009883947A5021690094 @default.
- W2009883947 hasAuthorship W2009883947A5051387107 @default.
- W2009883947 hasConcept C120665830 @default.
- W2009883947 hasConcept C121130766 @default.
- W2009883947 hasConcept C121332964 @default.
- W2009883947 hasConcept C131043120 @default.
- W2009883947 hasConcept C135768490 @default.
- W2009883947 hasConcept C140820882 @default.
- W2009883947 hasConcept C157216528 @default.
- W2009883947 hasConcept C171889981 @default.
- W2009883947 hasConcept C182310444 @default.
- W2009883947 hasConcept C206835866 @default.
- W2009883947 hasConcept C207821765 @default.
- W2009883947 hasConcept C38349280 @default.
- W2009883947 hasConcept C57879066 @default.
- W2009883947 hasConcept C62520636 @default.
- W2009883947 hasConcept C74650414 @default.
- W2009883947 hasConcept C86252789 @default.
- W2009883947 hasConceptScore W2009883947C120665830 @default.
- W2009883947 hasConceptScore W2009883947C121130766 @default.
- W2009883947 hasConceptScore W2009883947C121332964 @default.
- W2009883947 hasConceptScore W2009883947C131043120 @default.
- W2009883947 hasConceptScore W2009883947C135768490 @default.
- W2009883947 hasConceptScore W2009883947C140820882 @default.
- W2009883947 hasConceptScore W2009883947C157216528 @default.
- W2009883947 hasConceptScore W2009883947C171889981 @default.
- W2009883947 hasConceptScore W2009883947C182310444 @default.
- W2009883947 hasConceptScore W2009883947C206835866 @default.
- W2009883947 hasConceptScore W2009883947C207821765 @default.
- W2009883947 hasConceptScore W2009883947C38349280 @default.
- W2009883947 hasConceptScore W2009883947C57879066 @default.
- W2009883947 hasConceptScore W2009883947C62520636 @default.
- W2009883947 hasConceptScore W2009883947C74650414 @default.
- W2009883947 hasConceptScore W2009883947C86252789 @default.
- W2009883947 hasLocation W20098839471 @default.
- W2009883947 hasOpenAccess W2009883947 @default.
- W2009883947 hasPrimaryLocation W20098839471 @default.
- W2009883947 hasRelatedWork W112462231 @default.
- W2009883947 hasRelatedWork W1625776454 @default.
- W2009883947 hasRelatedWork W2009883947 @default.
- W2009883947 hasRelatedWork W2042716066 @default.
- W2009883947 hasRelatedWork W2185398922 @default.
- W2009883947 hasRelatedWork W2205663137 @default.
- W2009883947 hasRelatedWork W2278763127 @default.
- W2009883947 hasRelatedWork W2322016241 @default.
- W2009883947 hasRelatedWork W2344223751 @default.
- W2009883947 hasRelatedWork W587428955 @default.
- W2009883947 hasVolume "260" @default.
- W2009883947 isParatext "false" @default.
- W2009883947 isRetracted "false" @default.
- W2009883947 magId "2009883947" @default.
- W2009883947 workType "article" @default.