Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010009771> ?p ?o ?g. }
- W2010009771 abstract "This paper concerns the use of synthetic data for protecting the confidentiality of business data during statistical analysis. Synthetic datasets are constructed by replacing sensitive values in a confidential dataset with draws from statistical models estimated on the confidential dataset. Unfortunately, the process of generating effective statistical models can be a difficult and labour-intensive task. Recently, it has been proposed to use easily-implemented methods from machine learning instead of statistical model estimation in the data synthesis task. J. Drechsler and J.P. Reiter [1] have conducted an evaluation of four such methods, and have found that regression trees could give rise to synthetic datasets which provide reliable analysis results as well as low disclosure risks. Their conclusion was based on simulations using a subset of the 2002 Uganda census public use file, and it is an interesting question whether the same conclusion applies to other types of data with different characteristics. For example, business data have quite different characteristics from population census and survey data. Business data generally have few variables that are mostly categorical, and often have highly skewed distributions with outliers. In this paper we investigate the applicability of regression-tree-based methods for constructing synthetic business data. We give a detailed example comparing exploratory data analysis and linear regression results under two variants of a regression-tree-based synthetic data approach. We also include an evaluation of the analysis results with respect to the results of analysis of the original data. We further investigate the impact of different stopping criteria on performance. Our example provides evidence that synthesisers based on regression trees may not be immediately applicable in the context of business data. Further investigation, including further simulation studies with larger datasets, is certainly indicated." @default.
- W2010009771 created "2016-06-24" @default.
- W2010009771 creator A5025683313 @default.
- W2010009771 creator A5041388212 @default.
- W2010009771 creator A5046761163 @default.
- W2010009771 date "2011-12-01" @default.
- W2010009771 modified "2023-10-07" @default.
- W2010009771 title "Applicability of Regression-Tree-Based Synthetic Data Methods for Business Data" @default.
- W2010009771 cites W1485110750 @default.
- W2010009771 cites W1491523329 @default.
- W2010009771 cites W1497859558 @default.
- W2010009771 cites W1524446290 @default.
- W2010009771 cites W1561400825 @default.
- W2010009771 cites W1578810938 @default.
- W2010009771 cites W1594031697 @default.
- W2010009771 cites W1725965606 @default.
- W2010009771 cites W1873763122 @default.
- W2010009771 cites W187651740 @default.
- W2010009771 cites W2001994823 @default.
- W2010009771 cites W2046683581 @default.
- W2010009771 cites W2078556058 @default.
- W2010009771 cites W2079229132 @default.
- W2010009771 cites W2088431433 @default.
- W2010009771 cites W2145709897 @default.
- W2010009771 cites W2159894141 @default.
- W2010009771 cites W2169076391 @default.
- W2010009771 cites W3013289126 @default.
- W2010009771 doi "https://doi.org/10.1109/icdmw.2011.32" @default.
- W2010009771 hasPublicationYear "2011" @default.
- W2010009771 type Work @default.
- W2010009771 sameAs 2010009771 @default.
- W2010009771 citedByCount "2" @default.
- W2010009771 countsByYear W20100097712014 @default.
- W2010009771 countsByYear W20100097712016 @default.
- W2010009771 crossrefType "proceedings-article" @default.
- W2010009771 hasAuthorship W2010009771A5025683313 @default.
- W2010009771 hasAuthorship W2010009771A5041388212 @default.
- W2010009771 hasAuthorship W2010009771A5046761163 @default.
- W2010009771 hasConcept C105795698 @default.
- W2010009771 hasConcept C113174947 @default.
- W2010009771 hasConcept C114289077 @default.
- W2010009771 hasConcept C119857082 @default.
- W2010009771 hasConcept C120894424 @default.
- W2010009771 hasConcept C124101348 @default.
- W2010009771 hasConcept C134306372 @default.
- W2010009771 hasConcept C144024400 @default.
- W2010009771 hasConcept C149923435 @default.
- W2010009771 hasConcept C152877465 @default.
- W2010009771 hasConcept C154945302 @default.
- W2010009771 hasConcept C160920958 @default.
- W2010009771 hasConcept C2908647359 @default.
- W2010009771 hasConcept C33923547 @default.
- W2010009771 hasConcept C41008148 @default.
- W2010009771 hasConcept C5274069 @default.
- W2010009771 hasConcept C79337645 @default.
- W2010009771 hasConcept C83546350 @default.
- W2010009771 hasConcept C84525736 @default.
- W2010009771 hasConceptScore W2010009771C105795698 @default.
- W2010009771 hasConceptScore W2010009771C113174947 @default.
- W2010009771 hasConceptScore W2010009771C114289077 @default.
- W2010009771 hasConceptScore W2010009771C119857082 @default.
- W2010009771 hasConceptScore W2010009771C120894424 @default.
- W2010009771 hasConceptScore W2010009771C124101348 @default.
- W2010009771 hasConceptScore W2010009771C134306372 @default.
- W2010009771 hasConceptScore W2010009771C144024400 @default.
- W2010009771 hasConceptScore W2010009771C149923435 @default.
- W2010009771 hasConceptScore W2010009771C152877465 @default.
- W2010009771 hasConceptScore W2010009771C154945302 @default.
- W2010009771 hasConceptScore W2010009771C160920958 @default.
- W2010009771 hasConceptScore W2010009771C2908647359 @default.
- W2010009771 hasConceptScore W2010009771C33923547 @default.
- W2010009771 hasConceptScore W2010009771C41008148 @default.
- W2010009771 hasConceptScore W2010009771C5274069 @default.
- W2010009771 hasConceptScore W2010009771C79337645 @default.
- W2010009771 hasConceptScore W2010009771C83546350 @default.
- W2010009771 hasConceptScore W2010009771C84525736 @default.
- W2010009771 hasLocation W20100097711 @default.
- W2010009771 hasOpenAccess W2010009771 @default.
- W2010009771 hasPrimaryLocation W20100097711 @default.
- W2010009771 hasRelatedWork W127389006 @default.
- W2010009771 hasRelatedWork W1891272961 @default.
- W2010009771 hasRelatedWork W1997728983 @default.
- W2010009771 hasRelatedWork W2025992029 @default.
- W2010009771 hasRelatedWork W2141419835 @default.
- W2010009771 hasRelatedWork W2188184781 @default.
- W2010009771 hasRelatedWork W2261839053 @default.
- W2010009771 hasRelatedWork W2336226269 @default.
- W2010009771 hasRelatedWork W2342613215 @default.
- W2010009771 hasRelatedWork W2476149502 @default.
- W2010009771 hasRelatedWork W2885572615 @default.
- W2010009771 hasRelatedWork W2888218142 @default.
- W2010009771 hasRelatedWork W2897811286 @default.
- W2010009771 hasRelatedWork W2906528293 @default.
- W2010009771 hasRelatedWork W3039955899 @default.
- W2010009771 hasRelatedWork W3082860126 @default.
- W2010009771 hasRelatedWork W3121591741 @default.
- W2010009771 hasRelatedWork W3123599042 @default.
- W2010009771 hasRelatedWork W3172002721 @default.
- W2010009771 hasRelatedWork W46465114 @default.
- W2010009771 isParatext "false" @default.