Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010016312> ?p ?o ?g. }
- W2010016312 endingPage "537" @default.
- W2010016312 startingPage "513" @default.
- W2010016312 abstract "Estimation techniques in computer vision applications must estimate accurate model parameters despite small-scale noise in the data, occasional large-scale measurement errors (outliers), and measurements from multiple populations in the same data set. Increasingly, robust estimation techniques, some borrowed from the statistics literature and others described in the computer vision literature, have been used in solving these parameter estimation problems. Ideally, these techniques should effectively ignore the outliers and measurements from other populations, treating them as outliers, when estimating the parameters of a single population. Two frequently used techniques are least-median of squares (LMS) [P. J. Rousseeuw, {J. Amer. Statist. Assoc., 79 (1984), pp. 871--880] and M-estimators [Robust Statistics: The Approach Based on Influence Functions, F. R. Hampel et al., John Wiley, 1986; Robust Statistics, P. J. Huber, John Wiley, 1981]. LMS handles large fractions of outliers, up to the theoretical limit of 50% for estimators invariant to affine changes to the data, but has low statistical efficiency. M-estimators have higher statistical efficiency but tolerate much lower percentages of outliers unless properly initialized. While robust estimators have been used in a variety of computer vision applications, three are considered here. In analysis of range images---images containing depth or X, Y, Z measurements at each pixel instead of intensity measurements---robust estimators have been used successfully to estimate surface model parameters in small image regions. In stereo and motion analysis, they have been used to estimate parameters of what is called the 'fundamental matrix,' which characterizes the relative imaging geometry of two cameras imaging the same scene. Recently, robust estimators have been applied to estimating a quadratic image-to-image transformation model necessary to create a composite, 'mosaic image' from a series of images of the human retina. In each case, a straightforward application of standard robust estimators is insufficient, and carefully developed extensions are used to solve the problem." @default.
- W2010016312 created "2016-06-24" @default.
- W2010016312 creator A5035964079 @default.
- W2010016312 date "1999-01-01" @default.
- W2010016312 modified "2023-10-10" @default.
- W2010016312 title "Robust Parameter Estimation in Computer Vision" @default.
- W2010016312 cites W1575387439 @default.
- W2010016312 cites W1594830728 @default.
- W2010016312 cites W1964183178 @default.
- W2010016312 cites W1978436383 @default.
- W2010016312 cites W1981903823 @default.
- W2010016312 cites W1981911537 @default.
- W2010016312 cites W1985020152 @default.
- W2010016312 cites W1995376165 @default.
- W2010016312 cites W1996773532 @default.
- W2010016312 cites W2007719275 @default.
- W2010016312 cites W2009086487 @default.
- W2010016312 cites W2011891945 @default.
- W2010016312 cites W2019677198 @default.
- W2010016312 cites W2026311529 @default.
- W2010016312 cites W2033894760 @default.
- W2010016312 cites W2037187106 @default.
- W2010016312 cites W2038671794 @default.
- W2010016312 cites W2041628650 @default.
- W2010016312 cites W2043003144 @default.
- W2010016312 cites W2050551672 @default.
- W2010016312 cites W2067424579 @default.
- W2010016312 cites W2075686162 @default.
- W2010016312 cites W2075690349 @default.
- W2010016312 cites W2077626098 @default.
- W2010016312 cites W2080082398 @default.
- W2010016312 cites W2085261163 @default.
- W2010016312 cites W2088616581 @default.
- W2010016312 cites W2099088762 @default.
- W2010016312 cites W2099855035 @default.
- W2010016312 cites W2102747584 @default.
- W2010016312 cites W2112682275 @default.
- W2010016312 cites W2117551572 @default.
- W2010016312 cites W2118344977 @default.
- W2010016312 cites W2130755868 @default.
- W2010016312 cites W2131806657 @default.
- W2010016312 cites W2132492105 @default.
- W2010016312 cites W2132623663 @default.
- W2010016312 cites W2134781380 @default.
- W2010016312 cites W2136064518 @default.
- W2010016312 cites W2136937765 @default.
- W2010016312 cites W2145713909 @default.
- W2010016312 cites W2149659501 @default.
- W2010016312 cites W2152701363 @default.
- W2010016312 cites W2154422144 @default.
- W2010016312 cites W2155617385 @default.
- W2010016312 cites W2160867419 @default.
- W2010016312 cites W2162798307 @default.
- W2010016312 cites W2165584048 @default.
- W2010016312 cites W2498631646 @default.
- W2010016312 cites W2753461371 @default.
- W2010016312 cites W4244769743 @default.
- W2010016312 doi "https://doi.org/10.1137/s0036144598345802" @default.
- W2010016312 hasPublicationYear "1999" @default.
- W2010016312 type Work @default.
- W2010016312 sameAs 2010016312 @default.
- W2010016312 citedByCount "411" @default.
- W2010016312 countsByYear W20100163122012 @default.
- W2010016312 countsByYear W20100163122013 @default.
- W2010016312 countsByYear W20100163122014 @default.
- W2010016312 countsByYear W20100163122015 @default.
- W2010016312 countsByYear W20100163122016 @default.
- W2010016312 countsByYear W20100163122017 @default.
- W2010016312 countsByYear W20100163122018 @default.
- W2010016312 countsByYear W20100163122019 @default.
- W2010016312 countsByYear W20100163122020 @default.
- W2010016312 countsByYear W20100163122021 @default.
- W2010016312 countsByYear W20100163122022 @default.
- W2010016312 crossrefType "journal-article" @default.
- W2010016312 hasAuthorship W2010016312A5035964079 @default.
- W2010016312 hasBestOaLocation W20100163122 @default.
- W2010016312 hasConcept C104317684 @default.
- W2010016312 hasConcept C105795698 @default.
- W2010016312 hasConcept C11413529 @default.
- W2010016312 hasConcept C154945302 @default.
- W2010016312 hasConcept C159985019 @default.
- W2010016312 hasConcept C167928553 @default.
- W2010016312 hasConcept C185429906 @default.
- W2010016312 hasConcept C185592680 @default.
- W2010016312 hasConcept C188649462 @default.
- W2010016312 hasConcept C190470478 @default.
- W2010016312 hasConcept C192562407 @default.
- W2010016312 hasConcept C204323151 @default.
- W2010016312 hasConcept C25294789 @default.
- W2010016312 hasConcept C33923547 @default.
- W2010016312 hasConcept C37914503 @default.
- W2010016312 hasConcept C41008148 @default.
- W2010016312 hasConcept C55493867 @default.
- W2010016312 hasConcept C63479239 @default.
- W2010016312 hasConcept C67226441 @default.
- W2010016312 hasConcept C79337645 @default.
- W2010016312 hasConceptScore W2010016312C104317684 @default.
- W2010016312 hasConceptScore W2010016312C105795698 @default.