Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010024940> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2010024940 endingPage "131" @default.
- W2010024940 startingPage "121" @default.
- W2010024940 abstract "AbstractClimate change is likely to affect milk production because of the sensitivity of dairy cows to excessive temperature and humidity. We use downscaled climate data and county-level dairy industry data to estimate milk production losses for Holstein dairy cows in the conterminous United States. On a national level, we estimate present-day production losses of 1.9 percent relative to baseline production and project that climate impacts could increase these losses to 6.3 percent by the end of the twenty-first century. Using present-day prices, this corresponds to annual losses of $670 million per year today, rising to $2.2 billion per year by the end of the century. We also find that there is significant geographic variation in production losses and that regions currently experiencing the greatest heat-related impacts are also projected to experience the greatest additional losses with climate change. Specifically, statewide average estimates of end-of-century losses range from 0.4 percent in Washington to a 25 percent loss in annual milk production in Florida. Given that the majority of these losses occur in the summer months, this has the potential to significantly impact operations in hotter climates.乳牛对于极端气温和溼度具有敏感性, 因此气候变迁有可能会影响牛乳的生产。我们运用降尺度的气候数据和郡县层级的酪农业数据, 评估美国大陆荷斯坦牛的牛乳生产损失。我们估计, 目前全国层级相较于基本产量, 有百分之一点九的生产损失, 并推测气候冲击可能在二十一世纪末, 使该损失增加至百分之六点三。若运用目前的价格计算之, 此将等同于当下有每年六亿七千万美元的损失, 该损失并将于本世纪末增加至每年二十二亿美元。我们同时发现, 生产损失具有显着的地理差异, 而目前正受到热浪冲击最为严重之区域, 预计将同时成为在气候变迁之下承受最大额外损失之地。尤其是在州层级方面, 本世纪末的各州平均年度牛乳生产损失, 将从华盛顿州的百分之零点四, 到佛罗里达州的百分之二十五不等。有鉴于这些损失多半发生在夏季的月份, 上述情形将有可能显着影响较炎热气候中的酪农业经营。Es probable que el cambio climático afecte la producción de leche debido a la sensibilidad de las vacas lecheras a la temperatura y humedad excesivas. Utilizamos datos micro-climáticos e información de la industria lechera a escala de condado para calcular las pérdidas en la producción lechera con vacas de raza Holstein en los Estados Unidos contiguos. A nivel nacional, las pérdidas de producción las calculamos para la actualidad en el 1.9 por ciento relativo a la línea de base de la producción y proyectamos que los impactos del clima podrían incrementar estas pérdidas hasta el 6.3 por ciento a finales del siglo XXI. Con base en precios actuales, esto representa pérdidas anuales de $670 millones de dólares, lo cual alcanzaría los $2.2 mil millones de dólares por año al terminar el siglo. Encontramos también que hay una variación geográfica significativa en las pérdidas de producción y que las regiones que actualmente experimentan los impactos más altos relacionados con calor se proyectan también como las que experimentarían la más altas pérdidas adicionales con el cambio climático. Específicamente, los cálculos de pérdidas para los diferentes estados a finales del siglo van desde el 0.4 por ciento para Washington a un 25 por ciento de pérdida anual en producción lechera para Florida. Si se considera que la mayoría de estas pérdidas ocurren en los meses de verano, esto tiene el potencial de impactar significativamente las operaciones en los climas más cálidos.Key Words:: climate changeclimate impactsdairy productioneconomic impactsheat stress.关键词:: 气候变迁气候冲击酪农生产经济冲击热压力。Palabras clave:: cambio climáticoimpactos del climaproducción lecheraimpactos económicosestrés por calor Notes* The authors acknowledge the skilled assistance of Robert Norheim in providing geographic information systems analysis and maps used in this article, of Hye Jin (Jenny) Chang in gathering dairy industry data, and of the anonymous reviewers for their thoughtful comments on the article. This research was supported in part by the Climate Impacts Group and the Joint Institute for the Study of the Atmosphere and Ocean under NOAA Cooperative Agreement No. NA17RJ1232.1In principle one could recalibrate Equation 2 so that it can be applied using monthly data. This would necessarily reduce the accuracy of LOSS estimates and could result in errors that vary across different geographic regions. Furthermore, use of monthly average data would implicitly assume that the range of daily temperatures about the monthly mean remains the same going into the future. This is unlikely to be the case—for example, decreases in soil moisture associated with greater evaporative stress are expected to result in an increase in daily temperature variability (see, e.g., Seneviratne et al. Citation2010). Although our calculations (not shown) suggest that it might be possible to recalibrate the LOSS equation, further investigation would be needed to confirm that these concerns are not realized.2Gridding observed data entails several approximations (e.g., constant lapse rate, interpolation to data-sparse regions). Such assumptions can result in errors that vary with season and geography. Maurer et al. (Citation2002) used these data to drive a hydrologic model and showed that the results match observations quite well over large basins. Validation over large river basins does not address the question of reliability over small areas, however, and it is likely that representation of heat stress is sensitive to different errors than stream flow. Nonetheless, this data set includes the best daily-resolved continental-scale climate data that are available at sufficiently high resolution to be applied to dairy farming.3Gridded humidity data are not available at daily time steps: The use of monthly data is necessitated by the scarcity of surface humidity observations, which are much less common than observations of temperature.4The reported weekly averages of observed daily minimum and maximum temperature and humidity were used to compute LOSS. This introduces a possible inconsistency in that weekly average milk loss is not necessarily given by weekly average THI due to the nonlinearity of Equation 2. To test the validity of weekly values for this calculation, we used a Monte Carlo method and the reported standard deviations of the observed quantities to derive daily values and then computed the corresponding weekly average production loss. We found that the results based on weekly averages are in reasonable agreement with the Monte Carlo results, which follows from the near linearity of LOSS with temperature for the hot, dry conditions reported in the Ahmed and El Amin (Citation1997) study. As a result, only the former are shown for clarity.5Milk loss per cow is a weighted average of county-level data based on dairy population; state totals reflect all cows in each state but county-specific populations were not available for all counties, so “unattributed” cows—a percentage ranging from 1 percent in California, Wisconsin, and New York, to 28 percent in Florida—were allocated to the “unattributed” county with the smallest amount of milk loss per cow. This makes our estimates more conservative but does not affect our conclusions.Additional informationNotes on contributorsGuillaume MaugerGUILLAUME MAUGER is a research scientist with the Climate Impacts Group at the University of Washington, Seattle, WA 98112. E-mail: gmauger@uw.edu. His research centers on climate impacts assessment, including efforts to evaluate climate change impacts on hydrology and ecosystems.Yoram BaumanYORAM BAUMAN is an environmental economist previously affiliated with the University of Washington, Seattle, WA 98112. E-mail: yoram@standupeconomist.com. He now makes a living doing stand-up comedy about economics.Tamilee NennichTAMILEE NENNICH is an Associate Professor in the Department of Animal Sciences at Purdue University, West Lafayette, IN 47907. E-mail: tnennich@purdue.edu. Her research interests focus on management strategies to increase the utilization of nutrients on dairy farms while improving animal performance and decreasing nutrient excretion.Eric SalathéERIC SALATHÉ is an Associate Professor in the School of Science Technology Engineering and Mathematics, University of Washington, Bothell, WA 98011. E-mail: salathe@uw.edu. He conducts research on regional climate change and climate change impacts." @default.
- W2010024940 created "2016-06-24" @default.
- W2010024940 creator A5018551114 @default.
- W2010024940 creator A5028516613 @default.
- W2010024940 creator A5036951533 @default.
- W2010024940 creator A5081523764 @default.
- W2010024940 date "2014-06-24" @default.
- W2010024940 modified "2023-09-30" @default.
- W2010024940 title "Impacts of Climate Change on Milk Production in the United States" @default.
- W2010024940 cites W1602549407 @default.
- W2010024940 cites W1968572151 @default.
- W2010024940 cites W1969134338 @default.
- W2010024940 cites W1978815659 @default.
- W2010024940 cites W198183911 @default.
- W2010024940 cites W1990286763 @default.
- W2010024940 cites W1998967197 @default.
- W2010024940 cites W2026656626 @default.
- W2010024940 cites W2028979033 @default.
- W2010024940 cites W2034398147 @default.
- W2010024940 cites W2036712561 @default.
- W2010024940 cites W2057681397 @default.
- W2010024940 cites W2063997443 @default.
- W2010024940 cites W2078347632 @default.
- W2010024940 cites W2079279967 @default.
- W2010024940 cites W2093390561 @default.
- W2010024940 cites W2094333721 @default.
- W2010024940 cites W2126867085 @default.
- W2010024940 cites W2134497527 @default.
- W2010024940 cites W2171071998 @default.
- W2010024940 cites W69806578 @default.
- W2010024940 doi "https://doi.org/10.1080/00330124.2014.921017" @default.
- W2010024940 hasPublicationYear "2014" @default.
- W2010024940 type Work @default.
- W2010024940 sameAs 2010024940 @default.
- W2010024940 citedByCount "37" @default.
- W2010024940 countsByYear W20100249402015 @default.
- W2010024940 countsByYear W20100249402016 @default.
- W2010024940 countsByYear W20100249402017 @default.
- W2010024940 countsByYear W20100249402018 @default.
- W2010024940 countsByYear W20100249402019 @default.
- W2010024940 countsByYear W20100249402020 @default.
- W2010024940 countsByYear W20100249402021 @default.
- W2010024940 countsByYear W20100249402022 @default.
- W2010024940 countsByYear W20100249402023 @default.
- W2010024940 crossrefType "journal-article" @default.
- W2010024940 hasAuthorship W2010024940A5018551114 @default.
- W2010024940 hasAuthorship W2010024940A5028516613 @default.
- W2010024940 hasAuthorship W2010024940A5036951533 @default.
- W2010024940 hasAuthorship W2010024940A5081523764 @default.
- W2010024940 hasConcept C107826830 @default.
- W2010024940 hasConcept C132651083 @default.
- W2010024940 hasConcept C139719470 @default.
- W2010024940 hasConcept C140793950 @default.
- W2010024940 hasConcept C162324750 @default.
- W2010024940 hasConcept C175605778 @default.
- W2010024940 hasConcept C18903297 @default.
- W2010024940 hasConcept C205649164 @default.
- W2010024940 hasConcept C2778348673 @default.
- W2010024940 hasConcept C3020541086 @default.
- W2010024940 hasConcept C39432304 @default.
- W2010024940 hasConcept C86803240 @default.
- W2010024940 hasConceptScore W2010024940C107826830 @default.
- W2010024940 hasConceptScore W2010024940C132651083 @default.
- W2010024940 hasConceptScore W2010024940C139719470 @default.
- W2010024940 hasConceptScore W2010024940C140793950 @default.
- W2010024940 hasConceptScore W2010024940C162324750 @default.
- W2010024940 hasConceptScore W2010024940C175605778 @default.
- W2010024940 hasConceptScore W2010024940C18903297 @default.
- W2010024940 hasConceptScore W2010024940C205649164 @default.
- W2010024940 hasConceptScore W2010024940C2778348673 @default.
- W2010024940 hasConceptScore W2010024940C3020541086 @default.
- W2010024940 hasConceptScore W2010024940C39432304 @default.
- W2010024940 hasConceptScore W2010024940C86803240 @default.
- W2010024940 hasIssue "1" @default.
- W2010024940 hasLocation W20100249401 @default.
- W2010024940 hasOpenAccess W2010024940 @default.
- W2010024940 hasPrimaryLocation W20100249401 @default.
- W2010024940 hasRelatedWork W1966828035 @default.
- W2010024940 hasRelatedWork W1967654443 @default.
- W2010024940 hasRelatedWork W2118699598 @default.
- W2010024940 hasRelatedWork W2134607479 @default.
- W2010024940 hasRelatedWork W2146455132 @default.
- W2010024940 hasRelatedWork W2546665320 @default.
- W2010024940 hasRelatedWork W2782473932 @default.
- W2010024940 hasRelatedWork W3166164912 @default.
- W2010024940 hasRelatedWork W3194840763 @default.
- W2010024940 hasRelatedWork W4285159032 @default.
- W2010024940 hasVolume "67" @default.
- W2010024940 isParatext "false" @default.
- W2010024940 isRetracted "false" @default.
- W2010024940 magId "2010024940" @default.
- W2010024940 workType "article" @default.