Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010026423> ?p ?o ?g. }
- W2010026423 endingPage "193" @default.
- W2010026423 startingPage "179" @default.
- W2010026423 abstract "Natural diamonds grow and partially dissolve during mantle metasomatism and undergo further resorption during the ascent to the Earth's surface in kimberlite magmas. This study uses atomic force microscopy (AFM) for quantitative characterization of diamond resorption morphology in order to provide robust constraints of the composition of kimberlitic and mantle metasomatic fluids. We performed experiments in a piston–cylinder apparatus at pressures (P) of 1–3 GPa and temperatures (T) of 1150–1400 °C to examine the impact of P, T, and silica content of an aqueous fluid on diamond dissolution. Petrographic observation and microthermometry of synthetic fluid inclusions trapped in olivine at the run conditions provide constraints on the composition and density of the fluid reacting with the diamond. Our results confirm an inverse relationship between P and T on diamond dissolution kinetics. A P increase of 1 GPa suppresses diamond oxidation rates by the same value as a T decrease by ~ 50 °C, while the transformation rate of diamond crystal morphology from octahedron to tetrahexahedron increases with both P and T. All dissolved diamonds develop glossy surfaces, ditrigonal {111} faces, sheaf striations, and negative trigons, while circular pits only occur in aqueous fluids with low silica content (≤ 4.2 mol/kg) at 1 GPa. We identify five distinct morphological groups of trigons: two types of point-bottomed (p/b) (trumpet- and V-shaped) and three types of flat-bottomed (f/b) (trumpet-shaped, trapezoid-shaped and rounded). AFM measurements of trigons from two successive runs showed three stages of their evolution. Etch pits nucleate at defects as trumpet p/b trigons with the vertical dissolution rate (Vd) faster than the dissolution rates at the surface free of defects; they further develop by growth of the bottoms in (111) plane to create trumpet-shaped f/b trigons accompanied by decrease in Vd; and finally form trapezoid-shaped f/b trigon with constant wall angles. The diameter of f/b trigons developed in the aqueous fluids depends on the diamond weight loss and dissolution kinetics, and does not correlate with their depth. Integration of our AFM data with the theoretical model for trigon formation suggests that the change from point- to flat-bottomed trigons depends on the defect sizes and dissolution conditions. Application of our results to the diamonds from Ekati diamond Mine, Canada, suggests that variations in diamond rounding in different pipes implies variable depth of fluid exsolution; presence of circular pits on diamonds indicates predominantly aqueous fluid during the latest stages of kimberlite emplacement; and comparison to the mantle-derived morphologies on Ekati diamonds implies the importance of CO2-rich fluids and/or carbonate melts during mantle metasomatism. The constrained effect of P on diamond dissolution kinetics indicates that appreciable diamond weight loss can only happen at P < 1 GPa and therefore the conditions at the latest stages of kimberlite emplacement are very important for assessments of diamond preservation in a kimberlite pipe." @default.
- W2010026423 created "2016-06-24" @default.
- W2010026423 creator A5019032413 @default.
- W2010026423 creator A5062759127 @default.
- W2010026423 creator A5072842356 @default.
- W2010026423 date "2015-06-01" @default.
- W2010026423 modified "2023-09-24" @default.
- W2010026423 title "Evolution of diamond resorption in a silicic aqueous fluid at 1–3 GPa: Application to kimberlite emplacement and mantle metasomatism" @default.
- W2010026423 cites W1647834571 @default.
- W2010026423 cites W1963715522 @default.
- W2010026423 cites W1965203815 @default.
- W2010026423 cites W1979354803 @default.
- W2010026423 cites W1980201551 @default.
- W2010026423 cites W1980347233 @default.
- W2010026423 cites W1981756317 @default.
- W2010026423 cites W1981858155 @default.
- W2010026423 cites W1986230641 @default.
- W2010026423 cites W1987652319 @default.
- W2010026423 cites W1992007428 @default.
- W2010026423 cites W1997857709 @default.
- W2010026423 cites W2002443197 @default.
- W2010026423 cites W2004891928 @default.
- W2010026423 cites W2014278400 @default.
- W2010026423 cites W2015420670 @default.
- W2010026423 cites W2018490895 @default.
- W2010026423 cites W2018960982 @default.
- W2010026423 cites W2021841840 @default.
- W2010026423 cites W2024142230 @default.
- W2010026423 cites W2024764916 @default.
- W2010026423 cites W2034315656 @default.
- W2010026423 cites W2034929682 @default.
- W2010026423 cites W2036531000 @default.
- W2010026423 cites W2041778691 @default.
- W2010026423 cites W2042044855 @default.
- W2010026423 cites W2043324312 @default.
- W2010026423 cites W2044078195 @default.
- W2010026423 cites W2044452920 @default.
- W2010026423 cites W2046757148 @default.
- W2010026423 cites W2053135892 @default.
- W2010026423 cites W2062095806 @default.
- W2010026423 cites W2062723204 @default.
- W2010026423 cites W2063974184 @default.
- W2010026423 cites W2064245664 @default.
- W2010026423 cites W2073602380 @default.
- W2010026423 cites W2074138304 @default.
- W2010026423 cites W2082488584 @default.
- W2010026423 cites W2087315632 @default.
- W2010026423 cites W2138728968 @default.
- W2010026423 cites W2145209216 @default.
- W2010026423 cites W2149198821 @default.
- W2010026423 cites W2170746611 @default.
- W2010026423 cites W2170794656 @default.
- W2010026423 cites W2241388222 @default.
- W2010026423 cites W2293201919 @default.
- W2010026423 cites W2318295706 @default.
- W2010026423 cites W2328799353 @default.
- W2010026423 cites W2343215739 @default.
- W2010026423 doi "https://doi.org/10.1016/j.lithos.2015.04.003" @default.
- W2010026423 hasPublicationYear "2015" @default.
- W2010026423 type Work @default.
- W2010026423 sameAs 2010026423 @default.
- W2010026423 citedByCount "15" @default.
- W2010026423 countsByYear W20100264232015 @default.
- W2010026423 countsByYear W20100264232016 @default.
- W2010026423 countsByYear W20100264232017 @default.
- W2010026423 countsByYear W20100264232018 @default.
- W2010026423 countsByYear W20100264232019 @default.
- W2010026423 countsByYear W20100264232020 @default.
- W2010026423 countsByYear W20100264232021 @default.
- W2010026423 countsByYear W20100264232022 @default.
- W2010026423 crossrefType "journal-article" @default.
- W2010026423 hasAuthorship W2010026423A5019032413 @default.
- W2010026423 hasAuthorship W2010026423A5062759127 @default.
- W2010026423 hasAuthorship W2010026423A5072842356 @default.
- W2010026423 hasConcept C104962623 @default.
- W2010026423 hasConcept C120806208 @default.
- W2010026423 hasConcept C127313418 @default.
- W2010026423 hasConcept C167919410 @default.
- W2010026423 hasConcept C17409809 @default.
- W2010026423 hasConcept C178790620 @default.
- W2010026423 hasConcept C183282558 @default.
- W2010026423 hasConcept C185592680 @default.
- W2010026423 hasConcept C2776921476 @default.
- W2010026423 hasConcept C5900021 @default.
- W2010026423 hasConcept C67236022 @default.
- W2010026423 hasConceptScore W2010026423C104962623 @default.
- W2010026423 hasConceptScore W2010026423C120806208 @default.
- W2010026423 hasConceptScore W2010026423C127313418 @default.
- W2010026423 hasConceptScore W2010026423C167919410 @default.
- W2010026423 hasConceptScore W2010026423C17409809 @default.
- W2010026423 hasConceptScore W2010026423C178790620 @default.
- W2010026423 hasConceptScore W2010026423C183282558 @default.
- W2010026423 hasConceptScore W2010026423C185592680 @default.
- W2010026423 hasConceptScore W2010026423C2776921476 @default.
- W2010026423 hasConceptScore W2010026423C5900021 @default.
- W2010026423 hasConceptScore W2010026423C67236022 @default.
- W2010026423 hasLocation W20100264231 @default.
- W2010026423 hasOpenAccess W2010026423 @default.