Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010056906> ?p ?o ?g. }
- W2010056906 endingPage "613" @default.
- W2010056906 startingPage "593" @default.
- W2010056906 abstract "The apparent overabundance of the highly siderophile elements (HSEs: Pt-group elements, Re and Au) in the mantles of Earth, Moon and Mars has not been satisfactorily explained. Although late accretion of a chondritic component seems to provide the most plausible explanation, metal–silicate equilibration in a magma ocean cannot be ruled out due to a lack of HSE partitioning data suitable for extrapolations to the relevant high pressure and high temperature conditions. We provide a new data set of partition coefficients simultaneously determined for Ru, Rh, Pd, Re, Ir and Pt over a range of 3.5–18 GPa and 2423–2773 K. In multianvil experiments, molten peridotite was equilibrated in MgO single crystal capsules with liquid Fe-alloy that contained bulk HSE concentrations of 53.2–98.9 wt% (XFe = 0.03–0.67) such that oxygen fugacities of IW − 1.5 to IW + 1.6 (i.e. logarithmic units relative to the iron-wüstite buffer) were established at run conditions. To analyse trace concentrations of the HSEs in the silicate melt with LA-ICP-MS, two silicate glass standards (1–119 ppm Ru, Rh, Pd, Re, Ir, Pt) were produced and evaluated for this study. Using an asymmetric regular solution model we have corrected experimental partition coefficients to account for the differences between HSE metal activities in the multicomponent Fe-alloys and infinite dilution. Based on the experimental data, the P and T dependence of the partition coefficients (D) was parameterized. The partition coefficients of all HSEs studied decrease with increasing pressure and to a greater extent with increasing temperature. Except for Pt, the decrease with pressure is stronger below ∼6 GPa and much weaker in the range 6–18 GPa. This change might result from pressure induced coordination changes in the silicate liquid. Extrapolating the D values over a large range of potential P–T conditions in a terrestrial magma ocean (peridotite liquidus at P ⩽ 60–80 GPa) we conclude that the P–T-induced decrease of D would not have been sufficient to explain HSE mantle abundances by metal–silicate equilibration at a common set of P–T-oxygen fugacity conditions. Therefore, the mantle concentrations of most HSEs cannot have been established during core formation. The comparatively less siderophile Pd might have been partly retained in the magma ocean if effective equilibration pressures reached 35–50 GPa. To a much smaller extent this could also apply to Pt and Rh providing that equilibration pressures reached ⩾60 GPa in the late stage of accretion. With most of the HSE partition coefficients at 60 GPa still differing by 0.5–3 orders of magnitude, metal–silicate equilibration alone cannot have produced the observed near-chondritic HSE abundances of the mantles of the Earth as well as of the Moon or Mars. Our results show that an additional process, such as the accretion of a late veneer composed of some type of chondritic material, was required. The results, therefore, support recent hybrid models, which propose that the observed HSE signatures are a combined result of both metal–silicate partitioning as well as an overprint by late accretion." @default.
- W2010056906 created "2016-06-24" @default.
- W2010056906 creator A5012433806 @default.
- W2010056906 creator A5016011747 @default.
- W2010056906 creator A5049764334 @default.
- W2010056906 creator A5066572736 @default.
- W2010056906 creator A5077972151 @default.
- W2010056906 date "2012-05-01" @default.
- W2010056906 modified "2023-10-17" @default.
- W2010056906 title "Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures - Implications for the origin of highly siderophile element concentrations in the Earth’s mantle" @default.
- W2010056906 cites W1969840459 @default.
- W2010056906 cites W1970350740 @default.
- W2010056906 cites W1970494800 @default.
- W2010056906 cites W1975136873 @default.
- W2010056906 cites W1975466657 @default.
- W2010056906 cites W1981977799 @default.
- W2010056906 cites W1990613251 @default.
- W2010056906 cites W1993864477 @default.
- W2010056906 cites W1994624520 @default.
- W2010056906 cites W2003143784 @default.
- W2010056906 cites W2010659865 @default.
- W2010056906 cites W2010837745 @default.
- W2010056906 cites W2014321303 @default.
- W2010056906 cites W2015537586 @default.
- W2010056906 cites W2020947023 @default.
- W2010056906 cites W2025708996 @default.
- W2010056906 cites W2026630163 @default.
- W2010056906 cites W2027609328 @default.
- W2010056906 cites W2036786814 @default.
- W2010056906 cites W2037380844 @default.
- W2010056906 cites W2046270665 @default.
- W2010056906 cites W2050020771 @default.
- W2010056906 cites W2050246165 @default.
- W2010056906 cites W2058724454 @default.
- W2010056906 cites W2058834305 @default.
- W2010056906 cites W2065783583 @default.
- W2010056906 cites W2067333889 @default.
- W2010056906 cites W2074014761 @default.
- W2010056906 cites W2077318864 @default.
- W2010056906 cites W2084060008 @default.
- W2010056906 cites W2085236573 @default.
- W2010056906 cites W2087748087 @default.
- W2010056906 cites W2087854013 @default.
- W2010056906 cites W2088335156 @default.
- W2010056906 cites W2092917902 @default.
- W2010056906 cites W2093475250 @default.
- W2010056906 cites W2094291429 @default.
- W2010056906 cites W2111696176 @default.
- W2010056906 cites W2120710898 @default.
- W2010056906 cites W2123913824 @default.
- W2010056906 cites W2128895710 @default.
- W2010056906 cites W2142364678 @default.
- W2010056906 cites W2151361184 @default.
- W2010056906 cites W2157820398 @default.
- W2010056906 cites W2163858057 @default.
- W2010056906 cites W2313881266 @default.
- W2010056906 cites W2329796711 @default.
- W2010056906 cites W4236601568 @default.
- W2010056906 doi "https://doi.org/10.1016/j.gca.2012.01.026" @default.
- W2010056906 hasPublicationYear "2012" @default.
- W2010056906 type Work @default.
- W2010056906 sameAs 2010056906 @default.
- W2010056906 citedByCount "134" @default.
- W2010056906 countsByYear W20100569062012 @default.
- W2010056906 countsByYear W20100569062013 @default.
- W2010056906 countsByYear W20100569062014 @default.
- W2010056906 countsByYear W20100569062015 @default.
- W2010056906 countsByYear W20100569062016 @default.
- W2010056906 countsByYear W20100569062017 @default.
- W2010056906 countsByYear W20100569062018 @default.
- W2010056906 countsByYear W20100569062019 @default.
- W2010056906 countsByYear W20100569062020 @default.
- W2010056906 countsByYear W20100569062021 @default.
- W2010056906 countsByYear W20100569062022 @default.
- W2010056906 countsByYear W20100569062023 @default.
- W2010056906 crossrefType "journal-article" @default.
- W2010056906 hasAuthorship W2010056906A5012433806 @default.
- W2010056906 hasAuthorship W2010056906A5016011747 @default.
- W2010056906 hasAuthorship W2010056906A5049764334 @default.
- W2010056906 hasAuthorship W2010056906A5066572736 @default.
- W2010056906 hasAuthorship W2010056906A5077972151 @default.
- W2010056906 hasConcept C113196181 @default.
- W2010056906 hasConcept C116862484 @default.
- W2010056906 hasConcept C121332964 @default.
- W2010056906 hasConcept C127313418 @default.
- W2010056906 hasConcept C130635790 @default.
- W2010056906 hasConcept C161790260 @default.
- W2010056906 hasConcept C17409809 @default.
- W2010056906 hasConcept C178790620 @default.
- W2010056906 hasConcept C185592680 @default.
- W2010056906 hasConcept C191897082 @default.
- W2010056906 hasConcept C192552737 @default.
- W2010056906 hasConcept C192562407 @default.
- W2010056906 hasConcept C2777335606 @default.
- W2010056906 hasConcept C2781251403 @default.
- W2010056906 hasConcept C43617362 @default.
- W2010056906 hasConcept C518104683 @default.
- W2010056906 hasConcept C544153396 @default.