Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010147005> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2010147005 endingPage "41" @default.
- W2010147005 startingPage "41" @default.
- W2010147005 abstract "This is an overview of results concerning applications of self-similar groups generated by automata to fractal geometry and dynamical systems. Few proofs are given, interested reader can find the rest of the proofs in the monograph [Nek05]. We associate to every contracting self-similar action a topological space JG called limit space together with a surjective continuous map s : JG −→ JG. On the other hand if we have an expanding self-covering f : M1 −→ M of a topological space by its open subset, then we construct the iterated monodromy group (denoted IMG(f)) of f , which is a contracting self-similar group. These two constructions (dynamical system (JG, s) from a self-similar group and self-similar group IMG(f) from a dynamical system) are inverse to each other. The action of f on its Julia set is topologically conjugate to the action of s on the limit space JIMG(f) (see Theorem 6.1). We get in this way on one hand interesting examples of groups from dynamical systems (like the “basilica group” IMG ( z − 1 ) , which is a first example of an amenable group not belonging to the class of the sub-exponentially amenable groups). On the other hand, iterated monodromy groups are algebraic tools giving full information about combinatorics of self-coverings. The paper has the following structure. Section “Self-similar actions and automata” provides the basic notions from automata theory and theory of groups acting on rooted trees. It also gives some classical examples of self-similar groups. Section “Permutational bimodules” develops algebraic tools which are used in the study of self-similar groups. We define the notion of a permutational bimodule, which gives a convenient algebraic interpretation of automata. A closely related notion is virtual endomorphism, which can be used to construct explicit self-similar actions. We describe at the end of the section self-similar actions of free abelian groups and show how they are related to numeration systems on Z. Section 4 defines iterated monodromy groups. We show how to compute them (their standard actions) as groups generated by automata. Section 5 studies contracting self-similar actions and defines their limit spaces JG. We also prove some basic properties of the limit spaces, limit G-spaces and tiles. The last section shows connections of the obtained results with other topics of Mathematics. Subsection 6.2 shows that Julia sets of post-critically finite rational functions are limit spaces of their iterated monodromy groups. Next two subsections show a connection between topology of the limit spaces and a notion of bounded automata from [Sid00] and construct an iterative algorithm finding approximations of the limit space of actions by bounded automata. In Subsection 6.5 automata generating iterated monodromy groups of complex polynomials are described. We will see in particular, that iterated monodromy groups of complex polynomials are generated by bounded automata, so that the algorithm of the previous subsection can be used to draw topological approximations of the Julia sets of polynomials. We study in the last subsection the limit spaces of free Abelian groups and fit the theory of self-affine “digit” tilings in the framework of self-similar groups and their limit spaces." @default.
- W2010147005 created "2016-06-24" @default.
- W2010147005 creator A5027931454 @default.
- W2010147005 date "2007-06-30" @default.
- W2010147005 modified "2023-09-26" @default.
- W2010147005 title "Self-similar groups and their geometry" @default.
- W2010147005 cites W1488887332 @default.
- W2010147005 cites W1490263025 @default.
- W2010147005 cites W1516278578 @default.
- W2010147005 cites W1581663038 @default.
- W2010147005 cites W1582709641 @default.
- W2010147005 cites W1603977374 @default.
- W2010147005 cites W1646303234 @default.
- W2010147005 cites W1697944922 @default.
- W2010147005 cites W1747557089 @default.
- W2010147005 cites W1806203384 @default.
- W2010147005 cites W1963724858 @default.
- W2010147005 cites W1965077256 @default.
- W2010147005 cites W1995462426 @default.
- W2010147005 cites W1998076256 @default.
- W2010147005 cites W2003004532 @default.
- W2010147005 cites W2017753860 @default.
- W2010147005 cites W2023770261 @default.
- W2010147005 cites W2033123440 @default.
- W2010147005 cites W2042740070 @default.
- W2010147005 cites W2042865580 @default.
- W2010147005 cites W2053751591 @default.
- W2010147005 cites W2092019061 @default.
- W2010147005 cites W2108389326 @default.
- W2010147005 cites W2609856798 @default.
- W2010147005 cites W2752853835 @default.
- W2010147005 cites W2798619248 @default.
- W2010147005 cites W2962741047 @default.
- W2010147005 cites W2964227503 @default.
- W2010147005 cites W3104259830 @default.
- W2010147005 doi "https://doi.org/10.11606/issn.2316-9028.v1i1p41-95" @default.
- W2010147005 hasPublicationYear "2007" @default.
- W2010147005 type Work @default.
- W2010147005 sameAs 2010147005 @default.
- W2010147005 citedByCount "3" @default.
- W2010147005 countsByYear W20101470052015 @default.
- W2010147005 countsByYear W20101470052017 @default.
- W2010147005 countsByYear W20101470052019 @default.
- W2010147005 crossrefType "journal-article" @default.
- W2010147005 hasAuthorship W2010147005A5027931454 @default.
- W2010147005 hasBestOaLocation W20101470051 @default.
- W2010147005 hasConcept C2524010 @default.
- W2010147005 hasConcept C33923547 @default.
- W2010147005 hasConceptScore W2010147005C2524010 @default.
- W2010147005 hasConceptScore W2010147005C33923547 @default.
- W2010147005 hasIssue "1" @default.
- W2010147005 hasLocation W20101470051 @default.
- W2010147005 hasLocation W20101470052 @default.
- W2010147005 hasOpenAccess W2010147005 @default.
- W2010147005 hasPrimaryLocation W20101470051 @default.
- W2010147005 hasRelatedWork W1587224694 @default.
- W2010147005 hasRelatedWork W1979597421 @default.
- W2010147005 hasRelatedWork W2007980826 @default.
- W2010147005 hasRelatedWork W2061531152 @default.
- W2010147005 hasRelatedWork W2069964982 @default.
- W2010147005 hasRelatedWork W2077600819 @default.
- W2010147005 hasRelatedWork W2965437270 @default.
- W2010147005 hasRelatedWork W3002753104 @default.
- W2010147005 hasRelatedWork W4225152035 @default.
- W2010147005 hasRelatedWork W4245490552 @default.
- W2010147005 hasVolume "1" @default.
- W2010147005 isParatext "false" @default.
- W2010147005 isRetracted "false" @default.
- W2010147005 magId "2010147005" @default.
- W2010147005 workType "article" @default.