Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010191654> ?p ?o ?g. }
- W2010191654 abstract "It has been hypothesized that mechanical risk factors may be used to predict future atherosclerotic plaque rupture. Truly predictive methods for plaque rupture and methods to identify the best predictor(s) from all the candidates are lacking in the literature. A novel combination of computational and statistical models based on serial magnetic resonance imaging (MRI) was introduced to quantify sensitivity and specificity of mechanical predictors to identify the best candidate for plaque rupture site prediction. Serial in vivo MRI data of carotid plaque from one patient was acquired with follow-up scan showing ulceration. 3D computational fluid-structure interaction (FSI) models using both baseline and follow-up data were constructed and plaque wall stress (PWS) and strain (PWSn) and flow maximum shear stress (FSS) were extracted from all 600 matched nodal points (100 points per matched slice, baseline matching follow-up) on the lumen surface for analysis. Each of the 600 points was marked “ulcer” or “nonulcer” using follow-up scan. Predictive statistical models for each of the seven combinations of PWS, PWSn, and FSS were trained using the follow-up data and applied to the baseline data to assess their sensitivity and specificity using the 600 data points for ulcer predictions. Sensitivity of prediction is defined as the proportion of the true positive outcomes that are predicted to be positive. Specificity of prediction is defined as the proportion of the true negative outcomes that are correctly predicted to be negative. Using probability 0.3 as a threshold to infer ulcer occurrence at the prediction stage, the combination of PWS and PWSn provided the best predictive accuracy with (sensitivity, specificity) = (0.97, 0.958). Sensitivity and specificity given by PWS, PWSn, and FSS individually were (0.788, 0.968), (0.515, 0.968), and (0.758, 0.928), respectively. The proposed computational-statistical process provides a novel method and a framework to assess the sensitivity and specificity of various risk indicators and offers the potential to identify the optimized predictor for plaque rupture using serial MRI with follow-up scan showing ulceration as the gold standard for method validation. While serial MRI data with actual rupture are hard to acquire, this single-case study suggests that combination of multiple predictors may provide potential improvement to existing plaque assessment schemes. With large-scale patient studies, this predictive modeling process may provide more solid ground for rupture predictor selection strategies and methods for image-based plaque vulnerability assessment." @default.
- W2010191654 created "2016-06-24" @default.
- W2010191654 creator A5028936361 @default.
- W2010191654 creator A5033321028 @default.
- W2010191654 creator A5051573298 @default.
- W2010191654 date "2011-06-01" @default.
- W2010191654 modified "2023-09-23" @default.
- W2010191654 title "In Vivo Serial MRI-Based Models and Statistical Methods to Quantify Sensitivity and Specificity of Mechanical Predictors for Carotid Plaque Rupture: Location and Beyond" @default.
- W2010191654 cites W1492075988 @default.
- W2010191654 cites W1879772162 @default.
- W2010191654 cites W1965174699 @default.
- W2010191654 cites W1978684519 @default.
- W2010191654 cites W1981818444 @default.
- W2010191654 cites W1988263718 @default.
- W2010191654 cites W1988556310 @default.
- W2010191654 cites W1995903894 @default.
- W2010191654 cites W2004729555 @default.
- W2010191654 cites W2015263684 @default.
- W2010191654 cites W2019795032 @default.
- W2010191654 cites W2027222104 @default.
- W2010191654 cites W2058685975 @default.
- W2010191654 cites W2061329889 @default.
- W2010191654 cites W2069852059 @default.
- W2010191654 cites W2085829794 @default.
- W2010191654 cites W2086500216 @default.
- W2010191654 cites W2103398651 @default.
- W2010191654 cites W2104006291 @default.
- W2010191654 cites W2128321736 @default.
- W2010191654 cites W2154993723 @default.
- W2010191654 doi "https://doi.org/10.1115/1.4004189" @default.
- W2010191654 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3136918" @default.
- W2010191654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21744932" @default.
- W2010191654 hasPublicationYear "2011" @default.
- W2010191654 type Work @default.
- W2010191654 sameAs 2010191654 @default.
- W2010191654 citedByCount "15" @default.
- W2010191654 countsByYear W20101916542013 @default.
- W2010191654 countsByYear W20101916542014 @default.
- W2010191654 countsByYear W20101916542015 @default.
- W2010191654 countsByYear W20101916542016 @default.
- W2010191654 countsByYear W20101916542018 @default.
- W2010191654 countsByYear W20101916542019 @default.
- W2010191654 countsByYear W20101916542020 @default.
- W2010191654 countsByYear W20101916542021 @default.
- W2010191654 countsByYear W20101916542023 @default.
- W2010191654 crossrefType "journal-article" @default.
- W2010191654 hasAuthorship W2010191654A5028936361 @default.
- W2010191654 hasAuthorship W2010191654A5033321028 @default.
- W2010191654 hasAuthorship W2010191654A5051573298 @default.
- W2010191654 hasBestOaLocation W20101916542 @default.
- W2010191654 hasConcept C105795698 @default.
- W2010191654 hasConcept C114289077 @default.
- W2010191654 hasConcept C126322002 @default.
- W2010191654 hasConcept C126838900 @default.
- W2010191654 hasConcept C127413603 @default.
- W2010191654 hasConcept C136229726 @default.
- W2010191654 hasConcept C143409427 @default.
- W2010191654 hasConcept C164705383 @default.
- W2010191654 hasConcept C21200559 @default.
- W2010191654 hasConcept C24326235 @default.
- W2010191654 hasConcept C3019719930 @default.
- W2010191654 hasConcept C33923547 @default.
- W2010191654 hasConcept C45804977 @default.
- W2010191654 hasConcept C53789813 @default.
- W2010191654 hasConcept C71924100 @default.
- W2010191654 hasConceptScore W2010191654C105795698 @default.
- W2010191654 hasConceptScore W2010191654C114289077 @default.
- W2010191654 hasConceptScore W2010191654C126322002 @default.
- W2010191654 hasConceptScore W2010191654C126838900 @default.
- W2010191654 hasConceptScore W2010191654C127413603 @default.
- W2010191654 hasConceptScore W2010191654C136229726 @default.
- W2010191654 hasConceptScore W2010191654C143409427 @default.
- W2010191654 hasConceptScore W2010191654C164705383 @default.
- W2010191654 hasConceptScore W2010191654C21200559 @default.
- W2010191654 hasConceptScore W2010191654C24326235 @default.
- W2010191654 hasConceptScore W2010191654C3019719930 @default.
- W2010191654 hasConceptScore W2010191654C33923547 @default.
- W2010191654 hasConceptScore W2010191654C45804977 @default.
- W2010191654 hasConceptScore W2010191654C53789813 @default.
- W2010191654 hasConceptScore W2010191654C71924100 @default.
- W2010191654 hasIssue "6" @default.
- W2010191654 hasLocation W20101916541 @default.
- W2010191654 hasLocation W20101916542 @default.
- W2010191654 hasLocation W20101916543 @default.
- W2010191654 hasLocation W20101916544 @default.
- W2010191654 hasOpenAccess W2010191654 @default.
- W2010191654 hasPrimaryLocation W20101916541 @default.
- W2010191654 hasRelatedWork W1841185769 @default.
- W2010191654 hasRelatedWork W2010191654 @default.
- W2010191654 hasRelatedWork W2011347913 @default.
- W2010191654 hasRelatedWork W2049397185 @default.
- W2010191654 hasRelatedWork W2073151595 @default.
- W2010191654 hasRelatedWork W2074833529 @default.
- W2010191654 hasRelatedWork W2159512267 @default.
- W2010191654 hasRelatedWork W2304633692 @default.
- W2010191654 hasRelatedWork W2399063111 @default.
- W2010191654 hasRelatedWork W3141700921 @default.
- W2010191654 hasVolume "133" @default.
- W2010191654 isParatext "false" @default.
- W2010191654 isRetracted "false" @default.