Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010249562> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2010249562 endingPage "1103" @default.
- W2010249562 startingPage "1092" @default.
- W2010249562 abstract "This study proposes a hybrid model for evaluating surface roughness in hard turning using a Bayesian inference-based hidden Markov model and least squares support vector machine (HMM-SVM). The model inputs are multidirectional fusion features that are extracted from the acquired monitoring signals through independent component analysis and singular spectrum analysis. Based on a detailed analysis of the workpiece surface formation mechanism, the cutting vibration signals are determined as monitoring signals and an experimental scheme based on the multifeed rate is designed. The error rate of HMM-SVM is further reduced by introducing the stratification factor comparison method rather than using the conventional probability comparison method. A five-step iterative algorithm is presented to select and optimize the training set, which effectively solves the problems of precision degradation and training data insufficiency. Experimental studies show that the proposed model can accurately predict the surface roughness in case of missing samples. The advantages of the proposed model over least squares support vector machine (LSSVM) and multiple regression approaches are demonstrated via statistical analysis. Note to Practitioners-As an alternative to traditional grinding, hard turning is an attractive machining method, in which surface quality is a crucial measurement index. However, under the scenario of sample missing, a straightforward and relatively accurate model for predicting surface roughness is challenging to establish using conventional strategies. This paper reports on a new HMM-SVM model based on Bayesian inference for modeling and predicting surface roughness in hard turning. The samples are classified based on the accuracy grade of surface roughness according to the GB/T1031-2009 standard using the expectation maximization algorithm and HMM, which is superior in small-sample classification problem. LSSVM is employed to estimate surface roughness. The effectiveness of the proposed model is demonstrated through experimental investigations. The reported methodology can also be extended to other related fields." @default.
- W2010249562 created "2016-06-24" @default.
- W2010249562 creator A5029522441 @default.
- W2010249562 creator A5051135317 @default.
- W2010249562 creator A5080576150 @default.
- W2010249562 date "2015-07-01" @default.
- W2010249562 modified "2023-10-18" @default.
- W2010249562 title "Modeling and Predicting Surface Roughness in Hard Turning Using a Bayesian Inference-Based HMM-SVM Model" @default.
- W2010249562 cites W1866554777 @default.
- W2010249562 cites W1964403653 @default.
- W2010249562 cites W1967671198 @default.
- W2010249562 cites W1968287890 @default.
- W2010249562 cites W1986617645 @default.
- W2010249562 cites W2001359285 @default.
- W2010249562 cites W2014342272 @default.
- W2010249562 cites W2029279587 @default.
- W2010249562 cites W2035791392 @default.
- W2010249562 cites W2038338100 @default.
- W2010249562 cites W2045143941 @default.
- W2010249562 cites W2053677906 @default.
- W2010249562 cites W2060600711 @default.
- W2010249562 cites W2071642784 @default.
- W2010249562 cites W2080326113 @default.
- W2010249562 cites W2085535099 @default.
- W2010249562 cites W2098100436 @default.
- W2010249562 cites W2111022408 @default.
- W2010249562 cites W2119964381 @default.
- W2010249562 cites W2121753122 @default.
- W2010249562 cites W2125838338 @default.
- W2010249562 cites W2152745273 @default.
- W2010249562 cites W2486444208 @default.
- W2010249562 doi "https://doi.org/10.1109/tase.2014.2369478" @default.
- W2010249562 hasPublicationYear "2015" @default.
- W2010249562 type Work @default.
- W2010249562 sameAs 2010249562 @default.
- W2010249562 citedByCount "23" @default.
- W2010249562 countsByYear W20102495622016 @default.
- W2010249562 countsByYear W20102495622017 @default.
- W2010249562 countsByYear W20102495622018 @default.
- W2010249562 countsByYear W20102495622019 @default.
- W2010249562 countsByYear W20102495622020 @default.
- W2010249562 countsByYear W20102495622021 @default.
- W2010249562 countsByYear W20102495622022 @default.
- W2010249562 crossrefType "journal-article" @default.
- W2010249562 hasAuthorship W2010249562A5029522441 @default.
- W2010249562 hasAuthorship W2010249562A5051135317 @default.
- W2010249562 hasAuthorship W2010249562A5080576150 @default.
- W2010249562 hasConcept C107365816 @default.
- W2010249562 hasConcept C107673813 @default.
- W2010249562 hasConcept C11413529 @default.
- W2010249562 hasConcept C119857082 @default.
- W2010249562 hasConcept C12267149 @default.
- W2010249562 hasConcept C127413603 @default.
- W2010249562 hasConcept C153180895 @default.
- W2010249562 hasConcept C154945302 @default.
- W2010249562 hasConcept C159985019 @default.
- W2010249562 hasConcept C160234255 @default.
- W2010249562 hasConcept C192562407 @default.
- W2010249562 hasConcept C23224414 @default.
- W2010249562 hasConcept C41008148 @default.
- W2010249562 hasConcept C52001869 @default.
- W2010249562 hasConcept C523214423 @default.
- W2010249562 hasConcept C78519656 @default.
- W2010249562 hasConceptScore W2010249562C107365816 @default.
- W2010249562 hasConceptScore W2010249562C107673813 @default.
- W2010249562 hasConceptScore W2010249562C11413529 @default.
- W2010249562 hasConceptScore W2010249562C119857082 @default.
- W2010249562 hasConceptScore W2010249562C12267149 @default.
- W2010249562 hasConceptScore W2010249562C127413603 @default.
- W2010249562 hasConceptScore W2010249562C153180895 @default.
- W2010249562 hasConceptScore W2010249562C154945302 @default.
- W2010249562 hasConceptScore W2010249562C159985019 @default.
- W2010249562 hasConceptScore W2010249562C160234255 @default.
- W2010249562 hasConceptScore W2010249562C192562407 @default.
- W2010249562 hasConceptScore W2010249562C23224414 @default.
- W2010249562 hasConceptScore W2010249562C41008148 @default.
- W2010249562 hasConceptScore W2010249562C52001869 @default.
- W2010249562 hasConceptScore W2010249562C523214423 @default.
- W2010249562 hasConceptScore W2010249562C78519656 @default.
- W2010249562 hasIssue "3" @default.
- W2010249562 hasLocation W20102495621 @default.
- W2010249562 hasOpenAccess W2010249562 @default.
- W2010249562 hasPrimaryLocation W20102495621 @default.
- W2010249562 hasRelatedWork W2041399278 @default.
- W2010249562 hasRelatedWork W2120476639 @default.
- W2010249562 hasRelatedWork W2136184105 @default.
- W2010249562 hasRelatedWork W2160451891 @default.
- W2010249562 hasRelatedWork W2349509599 @default.
- W2010249562 hasRelatedWork W3186233728 @default.
- W2010249562 hasRelatedWork W4327772909 @default.
- W2010249562 hasRelatedWork W4364301914 @default.
- W2010249562 hasRelatedWork W2187500075 @default.
- W2010249562 hasRelatedWork W2345184372 @default.
- W2010249562 hasVolume "12" @default.
- W2010249562 isParatext "false" @default.
- W2010249562 isRetracted "false" @default.
- W2010249562 magId "2010249562" @default.
- W2010249562 workType "article" @default.