Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010386944> ?p ?o ?g. }
- W2010386944 endingPage "92" @default.
- W2010386944 startingPage "81" @default.
- W2010386944 abstract "In the general field of quantum information and computation, quantum walks are playing an increasingly important role in constructing physical models and quantum algorithms. We have recently developed a distributed memory software package pyCTQW, with an object-oriented Python interface, that allows efficient simulation of large multi-particle CTQW (continuous-time quantum walk)-based systems. In this paper, we present an introduction to the Python and Fortran interfaces of pyCTQW, discuss various numerical methods of calculating the matrix exponential, and demonstrate the performance behavior of pyCTQW on a distributed memory cluster. In particular, the Chebyshev and Krylov-subspace methods for calculating the quantum walk propagation are provided, as well as methods for visualization and data analysis. Program title: pyCTQW Catalogue identifier: AEUN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEUN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 130389 No. of bytes in distributed program, including test data, etc.: 4971890 Distribution format: tar.gz Programming language: Fortran and Python. Computer: Workstation or cluster implementing MPI. Operating system: Any operating system with Fortran, python, and MPI installed. RAM: Depends on graph size and number of walkers Classification: 4.15, 14. External routines: PETSc [1–3], SLEPc [4–6], MPI, NumPy and SciPy [7–9], Matplotlib [10], NetworkX [11] Nature of problem: Simulates, visualizes and analyzes continuous-time quantum walks on arbitrary undirected graphs. Solution method: Distributed memory implementations of the matrix exponential, via a choice of Krylov-subspace and Chebyshev expansion techniques, are used to simulate the continuous-time quantum walkers. Visualization ability is provided via the supplied Python module and Matplotlib. Restrictions: The size of the quantum walking system is limited by the amount of available memory. The current package implements up to 3 simultaneous walkers with interactions, but it can be readily extended. Unusual features: In addition to utilizing a parallelized Krylov subspace method and Chebyshev approximation scheme to maximize efficiency, pyCTQW also provides functions for visualization of the quantum walk dynamics and calculation of multi-particle entanglement, and allows for arbitrary diagonal defects to be placed on graph nodes to explore transmission and resonance structures. Running time: Runtime varies depending on the size of the graph, number of processors used, and number of simultaneous walkers. References: [1] S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in: E. Arge, A.M. Bruaset, H.P. Langtangen (Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, p. 163–202. [2] S. Balay, J. Brown, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page, 2013. http://www.mcs.anl.gov/petsc. [3] S. Balay, J. Brown, Buschelman, Kris, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Users Manual, Technical Report ANL- 95/11- Revision 3.4, Argonne National Laboratory, 2013. [4] V. Hernandez, J.E. Roman, V. Vidal, SLEPc: scalable library for eigenvalue problem computations, Lecture Notes in Computer Science 2565 (2003) 377–391. [5] V. Hernandez, J.E. Roman, V. Vidal, SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software 31 (2005) 351–362. [6] C. Campos, J.E. Roman, E. Romero, A. Tomas, SLEPc Users Manual, Technical Report DSIC-II/ 24/02- Revision 3.3, D. Sistemes Informàtics i Computació, Universitat Politècnica de València, 2012. [7] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python 2001. [8] P. Peterson, F2PY: a tool for connecting Fortran and python programs, International Journal of Computational Science and Engineering 4 (2009) 296. [9] T.E. Oliphant, Python for scientific computing, Computing in Science and Engineering 9 (2007) 10–20. [10] J.D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science and Engineering 9 (2007) 90–95. [11] A.A. Hagberg, D.A. Schult, P.J. Swart, Exploring network structure, dynamics, and function using NetworkX, in: ps-G. Varoquaux, T. Vaught, J. Millman (Eds.), Proceedings of the 7th Python in Science Conference, Pasadena, CA USA, pp. 11–15." @default.
- W2010386944 created "2016-06-24" @default.
- W2010386944 creator A5002250366 @default.
- W2010386944 creator A5040713757 @default.
- W2010386944 date "2015-01-01" @default.
- W2010386944 modified "2023-09-23" @default.
- W2010386944 title "pyCTQW: A continuous-time quantum walk simulator on distributed memory computers" @default.
- W2010386944 cites W1519689626 @default.
- W2010386944 cites W1957621608 @default.
- W2010386944 cites W1966092221 @default.
- W2010386944 cites W1966944505 @default.
- W2010386944 cites W1971102487 @default.
- W2010386944 cites W1975528636 @default.
- W2010386944 cites W1980018848 @default.
- W2010386944 cites W1980799223 @default.
- W2010386944 cites W1981550893 @default.
- W2010386944 cites W1990940849 @default.
- W2010386944 cites W1992060082 @default.
- W2010386944 cites W1994917526 @default.
- W2010386944 cites W2011655084 @default.
- W2010386944 cites W2020275424 @default.
- W2010386944 cites W2027162983 @default.
- W2010386944 cites W2027992099 @default.
- W2010386944 cites W2028212620 @default.
- W2010386944 cites W2030406890 @default.
- W2010386944 cites W2033554301 @default.
- W2010386944 cites W2034570650 @default.
- W2010386944 cites W2035670832 @default.
- W2010386944 cites W2037771163 @default.
- W2010386944 cites W2040927484 @default.
- W2010386944 cites W2043682513 @default.
- W2010386944 cites W2046796099 @default.
- W2010386944 cites W2058468006 @default.
- W2010386944 cites W2067136705 @default.
- W2010386944 cites W2080196590 @default.
- W2010386944 cites W2095556940 @default.
- W2010386944 cites W2095668864 @default.
- W2010386944 cites W2106565812 @default.
- W2010386944 cites W2119006096 @default.
- W2010386944 cites W2130727150 @default.
- W2010386944 cites W2134645580 @default.
- W2010386944 cites W2147228721 @default.
- W2010386944 cites W2161660864 @default.
- W2010386944 cites W2162328638 @default.
- W2010386944 cites W3089428152 @default.
- W2010386944 cites W3100427104 @default.
- W2010386944 cites W3101890301 @default.
- W2010386944 cites W3103918967 @default.
- W2010386944 cites W3106020145 @default.
- W2010386944 cites W4245100324 @default.
- W2010386944 doi "https://doi.org/10.1016/j.cpc.2014.09.011" @default.
- W2010386944 hasPublicationYear "2015" @default.
- W2010386944 type Work @default.
- W2010386944 sameAs 2010386944 @default.
- W2010386944 citedByCount "16" @default.
- W2010386944 countsByYear W20103869442016 @default.
- W2010386944 countsByYear W20103869442017 @default.
- W2010386944 countsByYear W20103869442018 @default.
- W2010386944 countsByYear W20103869442019 @default.
- W2010386944 countsByYear W20103869442020 @default.
- W2010386944 countsByYear W20103869442021 @default.
- W2010386944 countsByYear W20103869442022 @default.
- W2010386944 crossrefType "journal-article" @default.
- W2010386944 hasAuthorship W2010386944A5002250366 @default.
- W2010386944 hasAuthorship W2010386944A5040713757 @default.
- W2010386944 hasConcept C121332964 @default.
- W2010386944 hasConcept C121684516 @default.
- W2010386944 hasConcept C133875982 @default.
- W2010386944 hasConcept C140058369 @default.
- W2010386944 hasConcept C173608175 @default.
- W2010386944 hasConcept C199360897 @default.
- W2010386944 hasConcept C21442007 @default.
- W2010386944 hasConcept C2778241615 @default.
- W2010386944 hasConcept C41008148 @default.
- W2010386944 hasConcept C459310 @default.
- W2010386944 hasConcept C519991488 @default.
- W2010386944 hasConcept C58053490 @default.
- W2010386944 hasConcept C62520636 @default.
- W2010386944 hasConcept C80444323 @default.
- W2010386944 hasConcept C84114770 @default.
- W2010386944 hasConcept C91481028 @default.
- W2010386944 hasConceptScore W2010386944C121332964 @default.
- W2010386944 hasConceptScore W2010386944C121684516 @default.
- W2010386944 hasConceptScore W2010386944C133875982 @default.
- W2010386944 hasConceptScore W2010386944C140058369 @default.
- W2010386944 hasConceptScore W2010386944C173608175 @default.
- W2010386944 hasConceptScore W2010386944C199360897 @default.
- W2010386944 hasConceptScore W2010386944C21442007 @default.
- W2010386944 hasConceptScore W2010386944C2778241615 @default.
- W2010386944 hasConceptScore W2010386944C41008148 @default.
- W2010386944 hasConceptScore W2010386944C459310 @default.
- W2010386944 hasConceptScore W2010386944C519991488 @default.
- W2010386944 hasConceptScore W2010386944C58053490 @default.
- W2010386944 hasConceptScore W2010386944C62520636 @default.
- W2010386944 hasConceptScore W2010386944C80444323 @default.
- W2010386944 hasConceptScore W2010386944C84114770 @default.
- W2010386944 hasConceptScore W2010386944C91481028 @default.
- W2010386944 hasLocation W20103869441 @default.