Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010395847> ?p ?o ?g. }
- W2010395847 endingPage "4" @default.
- W2010395847 startingPage "4" @default.
- W2010395847 abstract "to understand regional mantle degassing, we compiled new and existing helium isotope data measured in hot springs, gas fields, and travertine-depositing cool springs and compared these geochemical data with mantle velocity structure determined from tomographic studies. these data suggest heterogeneous mantle degassing, with regions of highest He/He in groundwaters (hence, highest mantle helium contribution) corresponding to regions of lowest mantle velocity, a reflection of tectonically active and partially molten mantle. new He isotope and water chemistry data from travertinedepositing cool springs of the western United States show marked variability consistent with mixing between surface water recharge and inputs from deep crustal and mantle sources. the deeply sourced end-member fluids of these mixing trends have high He/He, high dissolved cO 2 , and high salinity compared to shallow recharge waters, and commonly have elevated trace element concentrations. consequently, these fluids cause degradation of water quality in western U.S. aquifers. Our conclusions highlight a connection between neotectonics (e.g., mantle degassing) and water quality in the western United States. INTRODUCTION Distributed deformation associated with the western north American plate margin extends >1000 km inboard from the San Andreas fault zone to the rocky Mountain and western Great Plains regions. this region forms an orogenic plateau with high average heat flow and is characterized by relatively low upper mantle P-wave velocities with marked heterogeneity (Godey et al., 2003; Humphreys et al., 2003). Progressive geochemical depletion of the upper mantle during generation of basaltic GSA Today: v. 15, no. 12, doi: 10.1130/1052-5173(2005)015 2.0.cO;2 melt likely occurred in several episodes since the Proterozoic (Karlstrom et al., 2005). the mantle was hydrated by flat-slab subduction during the laramide orogeny (Humphreys et al., 2003) and now is partially molten, leading to small-scale convective exchange between an upwelling asthenosphere (Gao et al., 2004) and compositionally variable lithosphere (Dueker et al., 2001; Karlstrom et al., 2005). the mantle underlying western north America is marked by one of the largest known shear wave velocity contrasts on earth (van der lee and nolet, 1997). At the continental scale, this transition reflects the heterogeneous thinning and warming of north America’s lithospheric keel as the plate moved southwest in absolute plate motion in the cenozoic into a wide zone of warm asthenosphere (cDrOM Working Group, 2002). We hypothesize that cO 2 -rich mineral springs and related travertine deposits in the western United States are a manifestation of this mantle tectonism, and hence the geochemistry of spring waters and gases can be used in conjunction with geophysical data sets to understand mantle heterogeneity and the processes of lithosphere-asthenosphere interaction. We report new water and gas chemistry with associated carbon and helium isotope data in the context of a synthesis of the existing noble gas isotope chemistry database for western north America. Our literature synthesis (table Dr1) builds on previous work in the area, with the regional helium isotope data presented in the context of a tomographic image of today’s mantle. We also show that travertine-depositing cool springs contain mantle-derived volatiles in a variety of locations and tectonic settings throughout the western United States, such that many aquifer systems are influenced by mixing of deeply sourced and circulated waters. HE ISOTOPES—BACKGROUND the isotope geochemistry of noble gases is a sensitive tracer of mantle-derived volatiles even with a large input of volatiles derived from earth’s crust. this is because the mantle has retained a significant fraction of the terrestrial inventory of the primordial isotope He acquired during earth formation (clarke et al., 1969), and it is still leaking to earth’s surface. in contrast, the crust has been extensively reworked over geological time and has retained very little He: its helium inventory is dominated by radiogenic He produced from the decay of Uand th-series nuclides. consequently, helium presently emanating from regions of mantle melting, such as mid-oceanic ridges or helium trapped in glass and phenocrysts in mid-oceanic-ridge basalts (MOrB), is characterized by a relatively high He/He ratio (r) of 8 ± 1 times that of air (r A ), which has a He/He ratio of 1.4 × 10 (Graham, 2002). indeed, values as high as 37 × r A have been observed in some ocean island basalts (Hilton et al., 1999) and are thought to be related to deep plumes tapping less degassed mantle reservoirs. When mantle-derived fluids are injected into the crust, mantle helium becomes progressively diluted by crustal helium characterized by low He/He ratios of ~0.02 r A . therefore, any value higher than 0.1 GSA Data repository item 2005199, a description of sampling and analytical methods and geochemical data tables Dr1–Dr3, is available online at www. geosociety.org/pubs/ft2005.htm or on request from Documents Secretary, GSA, P.O. Box 9140, Boulder, cO 80301-9140, USA, or editing@geosociety.org." @default.
- W2010395847 created "2016-06-24" @default.
- W2010395847 creator A5012014967 @default.
- W2010395847 creator A5021531147 @default.
- W2010395847 creator A5066990835 @default.
- W2010395847 creator A5069529201 @default.
- W2010395847 creator A5090086069 @default.
- W2010395847 date "2005-01-01" @default.
- W2010395847 modified "2023-10-17" @default.
- W2010395847 title "Continental-scale links between the mantle and groundwater systems of the western United States: Evidence from travertine springs and regional He isotope data" @default.
- W2010395847 cites W1485100402 @default.
- W2010395847 cites W1555601053 @default.
- W2010395847 cites W1674286777 @default.
- W2010395847 cites W1807492636 @default.
- W2010395847 cites W1966642307 @default.
- W2010395847 cites W1971381271 @default.
- W2010395847 cites W1974320276 @default.
- W2010395847 cites W1977701399 @default.
- W2010395847 cites W1983064840 @default.
- W2010395847 cites W1984795275 @default.
- W2010395847 cites W1991721197 @default.
- W2010395847 cites W1995518683 @default.
- W2010395847 cites W1999575525 @default.
- W2010395847 cites W2003732219 @default.
- W2010395847 cites W2007318010 @default.
- W2010395847 cites W2011361221 @default.
- W2010395847 cites W2015238200 @default.
- W2010395847 cites W2019950346 @default.
- W2010395847 cites W2023744046 @default.
- W2010395847 cites W2027274166 @default.
- W2010395847 cites W2034545134 @default.
- W2010395847 cites W2035272526 @default.
- W2010395847 cites W2035524946 @default.
- W2010395847 cites W2035805571 @default.
- W2010395847 cites W2037907561 @default.
- W2010395847 cites W2052904974 @default.
- W2010395847 cites W2053108236 @default.
- W2010395847 cites W2054184638 @default.
- W2010395847 cites W2058036284 @default.
- W2010395847 cites W2060664597 @default.
- W2010395847 cites W2065950653 @default.
- W2010395847 cites W2068269606 @default.
- W2010395847 cites W2070328734 @default.
- W2010395847 cites W2077904741 @default.
- W2010395847 cites W2084703037 @default.
- W2010395847 cites W2086465119 @default.
- W2010395847 cites W2100376263 @default.
- W2010395847 cites W2127215489 @default.
- W2010395847 cites W2129445198 @default.
- W2010395847 cites W2141556836 @default.
- W2010395847 cites W2152356003 @default.
- W2010395847 cites W2159620857 @default.
- W2010395847 cites W2171885909 @default.
- W2010395847 cites W4229928224 @default.
- W2010395847 doi "https://doi.org/10.1130/1052-5173(2005)015[4:cslbtm]2.0.co;2" @default.
- W2010395847 hasPublicationYear "2005" @default.
- W2010395847 type Work @default.
- W2010395847 sameAs 2010395847 @default.
- W2010395847 citedByCount "45" @default.
- W2010395847 countsByYear W20103958472012 @default.
- W2010395847 countsByYear W20103958472013 @default.
- W2010395847 countsByYear W20103958472014 @default.
- W2010395847 countsByYear W20103958472015 @default.
- W2010395847 countsByYear W20103958472016 @default.
- W2010395847 countsByYear W20103958472017 @default.
- W2010395847 countsByYear W20103958472018 @default.
- W2010395847 countsByYear W20103958472019 @default.
- W2010395847 countsByYear W20103958472020 @default.
- W2010395847 crossrefType "journal-article" @default.
- W2010395847 hasAuthorship W2010395847A5012014967 @default.
- W2010395847 hasAuthorship W2010395847A5021531147 @default.
- W2010395847 hasAuthorship W2010395847A5066990835 @default.
- W2010395847 hasAuthorship W2010395847A5069529201 @default.
- W2010395847 hasAuthorship W2010395847A5090086069 @default.
- W2010395847 hasBestOaLocation W20103958471 @default.
- W2010395847 hasConcept C121332964 @default.
- W2010395847 hasConcept C127313418 @default.
- W2010395847 hasConcept C164304813 @default.
- W2010395847 hasConcept C17409809 @default.
- W2010395847 hasConcept C187320778 @default.
- W2010395847 hasConcept C1965285 @default.
- W2010395847 hasConcept C205649164 @default.
- W2010395847 hasConcept C2778755073 @default.
- W2010395847 hasConcept C58640448 @default.
- W2010395847 hasConcept C62520636 @default.
- W2010395847 hasConcept C67236022 @default.
- W2010395847 hasConcept C76177295 @default.
- W2010395847 hasConceptScore W2010395847C121332964 @default.
- W2010395847 hasConceptScore W2010395847C127313418 @default.
- W2010395847 hasConceptScore W2010395847C164304813 @default.
- W2010395847 hasConceptScore W2010395847C17409809 @default.
- W2010395847 hasConceptScore W2010395847C187320778 @default.
- W2010395847 hasConceptScore W2010395847C1965285 @default.
- W2010395847 hasConceptScore W2010395847C205649164 @default.
- W2010395847 hasConceptScore W2010395847C2778755073 @default.
- W2010395847 hasConceptScore W2010395847C58640448 @default.
- W2010395847 hasConceptScore W2010395847C62520636 @default.
- W2010395847 hasConceptScore W2010395847C67236022 @default.