Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010425280> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2010425280 endingPage "2551" @default.
- W2010425280 startingPage "2541" @default.
- W2010425280 abstract "Abstract Extreme learning machine (ELM) is an efficient learning algorithm for generalized single hidden layer feedforward networks (SLFNs), which performs well in both regression and classification applications. It has recently been shown that from the optimization point of view ELM and support vector machine (SVM) are equivalent but ELM has less stringent optimization constraints. Due to the mild optimization constraints ELM can be easy of implementation and usually obtains better generalization performance. In this paper we study the performance of the one-against-all (OAA) and one-against-one (OAO) ELM for classification in multi-label face recognition applications. The performance is verified through four benchmarking face image data sets." @default.
- W2010425280 created "2016-06-24" @default.
- W2010425280 creator A5061746912 @default.
- W2010425280 creator A5076020819 @default.
- W2010425280 date "2011-09-01" @default.
- W2010425280 modified "2023-09-26" @default.
- W2010425280 title "Face recognition based on extreme learning machine" @default.
- W2010425280 cites W1502638562 @default.
- W2010425280 cites W1761337995 @default.
- W2010425280 cites W1989702938 @default.
- W2010425280 cites W1990938413 @default.
- W2010425280 cites W2100846437 @default.
- W2010425280 cites W2101276256 @default.
- W2010425280 cites W2102897151 @default.
- W2010425280 cites W2103971661 @default.
- W2010425280 cites W2107344437 @default.
- W2010425280 cites W2108223084 @default.
- W2010425280 cites W2111072639 @default.
- W2010425280 cites W2117513046 @default.
- W2010425280 cites W2118312744 @default.
- W2010425280 cites W2121647436 @default.
- W2010425280 cites W2122040390 @default.
- W2010425280 cites W2138451337 @default.
- W2010425280 cites W2141695047 @default.
- W2010425280 cites W2152826865 @default.
- W2010425280 cites W2156969234 @default.
- W2010425280 cites W2157595416 @default.
- W2010425280 cites W4239510810 @default.
- W2010425280 doi "https://doi.org/10.1016/j.neucom.2010.12.041" @default.
- W2010425280 hasPublicationYear "2011" @default.
- W2010425280 type Work @default.
- W2010425280 sameAs 2010425280 @default.
- W2010425280 citedByCount "186" @default.
- W2010425280 countsByYear W20104252802012 @default.
- W2010425280 countsByYear W20104252802013 @default.
- W2010425280 countsByYear W20104252802014 @default.
- W2010425280 countsByYear W20104252802015 @default.
- W2010425280 countsByYear W20104252802016 @default.
- W2010425280 countsByYear W20104252802017 @default.
- W2010425280 countsByYear W20104252802018 @default.
- W2010425280 countsByYear W20104252802019 @default.
- W2010425280 countsByYear W20104252802020 @default.
- W2010425280 countsByYear W20104252802021 @default.
- W2010425280 countsByYear W20104252802022 @default.
- W2010425280 countsByYear W20104252802023 @default.
- W2010425280 crossrefType "journal-article" @default.
- W2010425280 hasAuthorship W2010425280A5061746912 @default.
- W2010425280 hasAuthorship W2010425280A5076020819 @default.
- W2010425280 hasConcept C119857082 @default.
- W2010425280 hasConcept C144024400 @default.
- W2010425280 hasConcept C153180895 @default.
- W2010425280 hasConcept C154945302 @default.
- W2010425280 hasConcept C2779304628 @default.
- W2010425280 hasConcept C2780150128 @default.
- W2010425280 hasConcept C31510193 @default.
- W2010425280 hasConcept C36289849 @default.
- W2010425280 hasConcept C41008148 @default.
- W2010425280 hasConcept C50644808 @default.
- W2010425280 hasConceptScore W2010425280C119857082 @default.
- W2010425280 hasConceptScore W2010425280C144024400 @default.
- W2010425280 hasConceptScore W2010425280C153180895 @default.
- W2010425280 hasConceptScore W2010425280C154945302 @default.
- W2010425280 hasConceptScore W2010425280C2779304628 @default.
- W2010425280 hasConceptScore W2010425280C2780150128 @default.
- W2010425280 hasConceptScore W2010425280C31510193 @default.
- W2010425280 hasConceptScore W2010425280C36289849 @default.
- W2010425280 hasConceptScore W2010425280C41008148 @default.
- W2010425280 hasConceptScore W2010425280C50644808 @default.
- W2010425280 hasIssue "16" @default.
- W2010425280 hasLocation W20104252801 @default.
- W2010425280 hasOpenAccess W2010425280 @default.
- W2010425280 hasPrimaryLocation W20104252801 @default.
- W2010425280 hasRelatedWork W2004976700 @default.
- W2010425280 hasRelatedWork W2017517155 @default.
- W2010425280 hasRelatedWork W2060029454 @default.
- W2010425280 hasRelatedWork W2100085003 @default.
- W2010425280 hasRelatedWork W2136485282 @default.
- W2010425280 hasRelatedWork W2147083459 @default.
- W2010425280 hasRelatedWork W2347601237 @default.
- W2010425280 hasRelatedWork W2353697322 @default.
- W2010425280 hasRelatedWork W2897995864 @default.
- W2010425280 hasRelatedWork W4312603404 @default.
- W2010425280 hasVolume "74" @default.
- W2010425280 isParatext "false" @default.
- W2010425280 isRetracted "false" @default.
- W2010425280 magId "2010425280" @default.
- W2010425280 workType "article" @default.