Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010434073> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2010434073 endingPage "723" @default.
- W2010434073 startingPage "703" @default.
- W2010434073 abstract "Graph embeddings are useful in bounding the smallest nontrivial eigenvalues of Laplacian matrices from below. For an n × n Laplacian, these embedding methods can be characterized as follows: The lower bound is based on a clique embedding into the underlying graph of the Laplacian. An embedding can be represented by a matrix $Gamma$; the best possible bound based on this embedding is $n/lambda_{max} (Gamma^T Gamma)$, where $lambda_{max}$ indicates the largest eigenvalue of the specified matrix. However, the best bounds produced by embedding techniques are not tight; they can be off by a factor proportional to log2n for some Laplacians. We show that this gap is a result of the representation of the embedding: By including edge directions in the embedding matrix representation $Gamma$, it is possible to find an embedding such that $Gamma^T Gamma$ has eigenvalues that can be put into a one-to-one correspondence with the eigenvalues of the Laplacian. Specifically, if $lambda$ is a nonzero eigenvalue of either matrix, then $n / lambda$ is an eigenvalue of the other. Simple transformations map the corresponding eigenvectors to each other. The embedding that produces these correspondences has a simple description in electrical terms if the underlying graph of the Laplacian is viewed as a resistive circuit. We also show that a similar technique works for star embeddings when the Laplacian has a zero Dirichlet boundary condition, though the related eigenvalues in this case are reciprocals of each other. In the zero Dirichlet boundary case, the embedding matrix $Gamma$ can be used to construct the inverse of the Laplacian. Finally, we connect our results with previous techniques for producing bounds and provide an example." @default.
- W2010434073 created "2016-06-24" @default.
- W2010434073 creator A5010457003 @default.
- W2010434073 creator A5076799144 @default.
- W2010434073 date "2000-01-01" @default.
- W2010434073 modified "2023-10-14" @default.
- W2010434073 title "Graph Embeddings and Laplacian Eigenvalues" @default.
- W2010434073 cites W1565315122 @default.
- W2010434073 cites W1587744656 @default.
- W2010434073 cites W1631603072 @default.
- W2010434073 cites W1993111701 @default.
- W2010434073 cites W2009233867 @default.
- W2010434073 cites W2027199101 @default.
- W2010434073 cites W2033281046 @default.
- W2010434073 cites W2043694962 @default.
- W2010434073 cites W2045756072 @default.
- W2010434073 cites W2048572907 @default.
- W2010434073 cites W2052527407 @default.
- W2010434073 cites W2072211488 @default.
- W2010434073 cites W2106285343 @default.
- W2010434073 cites W2107940287 @default.
- W2010434073 cites W2114030927 @default.
- W2010434073 cites W2125531986 @default.
- W2010434073 doi "https://doi.org/10.1137/s0895479897329825" @default.
- W2010434073 hasPublicationYear "2000" @default.
- W2010434073 type Work @default.
- W2010434073 sameAs 2010434073 @default.
- W2010434073 citedByCount "63" @default.
- W2010434073 countsByYear W20104340732012 @default.
- W2010434073 countsByYear W20104340732013 @default.
- W2010434073 countsByYear W20104340732014 @default.
- W2010434073 countsByYear W20104340732015 @default.
- W2010434073 countsByYear W20104340732016 @default.
- W2010434073 countsByYear W20104340732017 @default.
- W2010434073 countsByYear W20104340732018 @default.
- W2010434073 countsByYear W20104340732019 @default.
- W2010434073 countsByYear W20104340732020 @default.
- W2010434073 countsByYear W20104340732023 @default.
- W2010434073 crossrefType "journal-article" @default.
- W2010434073 hasAuthorship W2010434073A5010457003 @default.
- W2010434073 hasAuthorship W2010434073A5076799144 @default.
- W2010434073 hasConcept C102231394 @default.
- W2010434073 hasConcept C110167270 @default.
- W2010434073 hasConcept C114614502 @default.
- W2010434073 hasConcept C115178988 @default.
- W2010434073 hasConcept C118615104 @default.
- W2010434073 hasConcept C121332964 @default.
- W2010434073 hasConcept C132525143 @default.
- W2010434073 hasConcept C134306372 @default.
- W2010434073 hasConcept C148158259 @default.
- W2010434073 hasConcept C154945302 @default.
- W2010434073 hasConcept C158693339 @default.
- W2010434073 hasConcept C165700671 @default.
- W2010434073 hasConcept C33923547 @default.
- W2010434073 hasConcept C41008148 @default.
- W2010434073 hasConcept C41608201 @default.
- W2010434073 hasConcept C62354387 @default.
- W2010434073 hasConcept C62520636 @default.
- W2010434073 hasConcept C77553402 @default.
- W2010434073 hasConceptScore W2010434073C102231394 @default.
- W2010434073 hasConceptScore W2010434073C110167270 @default.
- W2010434073 hasConceptScore W2010434073C114614502 @default.
- W2010434073 hasConceptScore W2010434073C115178988 @default.
- W2010434073 hasConceptScore W2010434073C118615104 @default.
- W2010434073 hasConceptScore W2010434073C121332964 @default.
- W2010434073 hasConceptScore W2010434073C132525143 @default.
- W2010434073 hasConceptScore W2010434073C134306372 @default.
- W2010434073 hasConceptScore W2010434073C148158259 @default.
- W2010434073 hasConceptScore W2010434073C154945302 @default.
- W2010434073 hasConceptScore W2010434073C158693339 @default.
- W2010434073 hasConceptScore W2010434073C165700671 @default.
- W2010434073 hasConceptScore W2010434073C33923547 @default.
- W2010434073 hasConceptScore W2010434073C41008148 @default.
- W2010434073 hasConceptScore W2010434073C41608201 @default.
- W2010434073 hasConceptScore W2010434073C62354387 @default.
- W2010434073 hasConceptScore W2010434073C62520636 @default.
- W2010434073 hasConceptScore W2010434073C77553402 @default.
- W2010434073 hasIssue "3" @default.
- W2010434073 hasLocation W20104340731 @default.
- W2010434073 hasOpenAccess W2010434073 @default.
- W2010434073 hasPrimaryLocation W20104340731 @default.
- W2010434073 hasRelatedWork W1577248254 @default.
- W2010434073 hasRelatedWork W1832592836 @default.
- W2010434073 hasRelatedWork W1993044428 @default.
- W2010434073 hasRelatedWork W2050491718 @default.
- W2010434073 hasRelatedWork W2056449679 @default.
- W2010434073 hasRelatedWork W2088008046 @default.
- W2010434073 hasRelatedWork W2162396328 @default.
- W2010434073 hasRelatedWork W4205249404 @default.
- W2010434073 hasRelatedWork W4293876796 @default.
- W2010434073 hasRelatedWork W4299787637 @default.
- W2010434073 hasVolume "21" @default.
- W2010434073 isParatext "false" @default.
- W2010434073 isRetracted "false" @default.
- W2010434073 magId "2010434073" @default.
- W2010434073 workType "article" @default.