Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010523904> ?p ?o ?g. }
- W2010523904 endingPage "206" @default.
- W2010523904 startingPage "192" @default.
- W2010523904 abstract "Postembedding immunogold labeling methods applied to ultrathin and semithin sections of cat dorsomedial medulla showed that neuronal perikarya, dendrites, myelinated and nonmyelinated axons, and axon terminals in the nucleus tractus solitarii contain glycine immunoreactivity. Light microscopic observations on semithin sections revealed that these immunoreactive structures were unevenly distributed throughout the entire nucleus. At the electron microscopic level, synaptic terminals with high levels of glycine-immunoreactivity, assumed to represent those releasing glycine as a neurotransmitter, were discriminated from terminals containing low, probably metabolic levels of glycine-immunoreactivity, by a quantitative analysis method. This compared the immunolabeling of randomly sampled terminals with a reference level of labeling derived from sampling the perikarya of dorsal vagal neurones. The vast majority of these “glycinergic” terminals contained pleomorphic vesicles, formed symmetrical synaptic active zones, and targeted dendrites. They appeared to be more numerous in areas of the nucleus tractus solitarii adjoining the tractus solitarius, but rather scarce caudally, medially, ventrally, and in the dorsal motor vagal nucleus. In a random analysis of the entire nucleus tractus solitarii, 26.2% of sampled terminals were found to qualify as glycine-immunoreactive. In contrast, boutons immunoreactive for γ-aminobutyric acid (GABA) were more evenly distributed throughout the dorsal vagal complex and accounted for 33.7% of the synaptic terminals sampled. A comparison of serial ultrathin sections suggested three subpopulations of synaptic terminals: one containing high levels of both GABA- and glycine-immunoreactivities (21% of all terminals sampled), one containing only GABA-immunoreactivity (12.7%), and relatively few terminals (5.2%) that were immunoreactive for glycine alone. These results were confirmed by dual labeling of sections using gold particles of different sizes. This study reports the first analysis of the ultrastructure of glycinergic nerve terminals in the cat dorsal vagal complex, and the pattern of coexistence of glycine and GABA observed provides an anatomical explanation for our previously reported inhibitory effects of glycine and GABA on neurones with cardiovascular and respiratory functions in the nucleus tractus solitarii. Synapse 33:192–206, 1999. © 1999 Wiley-Liss, Inc." @default.
- W2010523904 created "2016-06-24" @default.
- W2010523904 creator A5007725435 @default.
- W2010523904 creator A5077325488 @default.
- W2010523904 creator A5083577466 @default.
- W2010523904 date "1999-09-01" @default.
- W2010523904 modified "2023-10-17" @default.
- W2010523904 title "Glycine-immunoreactive synaptic terminals in the nucleus tractus solitarii of the cat: Ultrastructure and relationship to GABA-immunoreactive terminals" @default.
- W2010523904 cites W1628508588 @default.
- W2010523904 cites W184736537 @default.
- W2010523904 cites W1860253215 @default.
- W2010523904 cites W1862870409 @default.
- W2010523904 cites W1963978132 @default.
- W2010523904 cites W1964438334 @default.
- W2010523904 cites W1965870866 @default.
- W2010523904 cites W1966146114 @default.
- W2010523904 cites W1967708176 @default.
- W2010523904 cites W1970565132 @default.
- W2010523904 cites W1972136725 @default.
- W2010523904 cites W1972300204 @default.
- W2010523904 cites W1974934284 @default.
- W2010523904 cites W1980310343 @default.
- W2010523904 cites W1984857862 @default.
- W2010523904 cites W1990166061 @default.
- W2010523904 cites W1993638799 @default.
- W2010523904 cites W1995592261 @default.
- W2010523904 cites W1997732234 @default.
- W2010523904 cites W1998495221 @default.
- W2010523904 cites W1999020514 @default.
- W2010523904 cites W2000560814 @default.
- W2010523904 cites W2005039761 @default.
- W2010523904 cites W2005630489 @default.
- W2010523904 cites W2007860313 @default.
- W2010523904 cites W2008092829 @default.
- W2010523904 cites W2010667238 @default.
- W2010523904 cites W2011890553 @default.
- W2010523904 cites W2015006645 @default.
- W2010523904 cites W2020323143 @default.
- W2010523904 cites W2024736795 @default.
- W2010523904 cites W2028805054 @default.
- W2010523904 cites W2030386595 @default.
- W2010523904 cites W2036784392 @default.
- W2010523904 cites W2044249049 @default.
- W2010523904 cites W2049719862 @default.
- W2010523904 cites W2051647412 @default.
- W2010523904 cites W2055736055 @default.
- W2010523904 cites W2059140003 @default.
- W2010523904 cites W2063683718 @default.
- W2010523904 cites W2064280850 @default.
- W2010523904 cites W2066835162 @default.
- W2010523904 cites W2074361827 @default.
- W2010523904 cites W2075939908 @default.
- W2010523904 cites W2076595777 @default.
- W2010523904 cites W2077029286 @default.
- W2010523904 cites W2082704208 @default.
- W2010523904 cites W2084414231 @default.
- W2010523904 cites W2087538286 @default.
- W2010523904 cites W2089244845 @default.
- W2010523904 cites W2092588870 @default.
- W2010523904 cites W2097031919 @default.
- W2010523904 cites W2107861950 @default.
- W2010523904 cites W2131764969 @default.
- W2010523904 cites W2143869833 @default.
- W2010523904 cites W2159257074 @default.
- W2010523904 cites W2882983627 @default.
- W2010523904 cites W4234881364 @default.
- W2010523904 doi "https://doi.org/10.1002/(sici)1098-2396(19990901)33:3<192::aid-syn4>3.0.co;2-k" @default.
- W2010523904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10420167" @default.
- W2010523904 hasPublicationYear "1999" @default.
- W2010523904 type Work @default.
- W2010523904 sameAs 2010523904 @default.
- W2010523904 citedByCount "25" @default.
- W2010523904 countsByYear W20105239042012 @default.
- W2010523904 countsByYear W20105239042013 @default.
- W2010523904 countsByYear W20105239042014 @default.
- W2010523904 countsByYear W20105239042015 @default.
- W2010523904 countsByYear W20105239042016 @default.
- W2010523904 countsByYear W20105239042021 @default.
- W2010523904 countsByYear W20105239042022 @default.
- W2010523904 crossrefType "journal-article" @default.
- W2010523904 hasAuthorship W2010523904A5007725435 @default.
- W2010523904 hasAuthorship W2010523904A5077325488 @default.
- W2010523904 hasAuthorship W2010523904A5083577466 @default.
- W2010523904 hasConcept C105702510 @default.
- W2010523904 hasConcept C130316041 @default.
- W2010523904 hasConcept C134018914 @default.
- W2010523904 hasConcept C148785051 @default.
- W2010523904 hasConcept C169760540 @default.
- W2010523904 hasConcept C185592680 @default.
- W2010523904 hasConcept C203014093 @default.
- W2010523904 hasConcept C204232928 @default.
- W2010523904 hasConcept C2776219046 @default.
- W2010523904 hasConcept C2777756961 @default.
- W2010523904 hasConcept C2777786120 @default.
- W2010523904 hasConcept C2777877921 @default.
- W2010523904 hasConcept C2778110749 @default.
- W2010523904 hasConcept C2779530196 @default.
- W2010523904 hasConcept C2779929655 @default.