Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010583635> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2010583635 endingPage "126" @default.
- W2010583635 startingPage "105" @default.
- W2010583635 abstract "The microphysics-dynamics interaction of clouds was theoretically studied in the zone after maximum supersaturation (S−1)mc where the droplet number concentration remains nearly constant. The analytic solution obtained, employing the Maxwellian droplet growth theory, describes (S−1)mc=Iwu34n−12, where I is the proportionality constant, wu the updraft velocity and n the number concentration of the droplets. This solution agrees well with previous studies. Factor I increases with altitude in the adiabatic atmosphere, decreases with temperature under constant pressure and increases with pressure under constant temperature. For the zone sufficiently after (S−1)mc, an approximate relationship (S−1) ∝r−1 ∝t−13 is shown to hold, where (S−1) is the supersaturation, f the average droplet radius and t the time. Using the diffusion-kinetic theory of droplet growth, which includes the effects of thermal accomodation and condensation coefficients, numerically soluble relationships are derived for (S−1), r and t. Application of this theory is shown to increase (S−1)mc considerably. The Maxwellian analytic solution that is obtained, the variation of Factor I under different atmospheric conditions and the effect of condensation and thermal accomoddation coefficients through the use of the diffusion-kinetic droplet growth theory suggest that maximum supersaturation may reach as high as 10% and beyond in convective clouds. On étude théoriquement les interactions entre la microphysique et la dynamique des nuages dans la zone au-delà de la sursaturation maximale (S−1)mc où la concentration en nombre des gouttelettes est pratiquement constante. La solution analytique obtenue, que utilise la théorie de Maxwell de croissance des gouttes, donne (S−1)mc=Iwu34n−12, où I est la constante de proportionnalité, wu la vitesse du courant ascendant et n la concentration en nombre des goutelettes. Cette solution s'accorde bien avec de précédentes études. Le facteur I augmente avec l'altitude dans l'atmosphère adiabatique, diminue avec la température sous pression constante, et augmente avec la pression sous température constante. Dans la zone suffisamment au-delà de (S−1)mc, on trouve une relation approchée (S−1) ∝r−1 ∝t−13, où (S−1) est la sursaturation, r le rayon moyen des gouttelettes, et t le temps. En utilisant la théorie cinétique de croissance des gouttelettes, qui prend en compte les effets de l'accommodation thermique et des coefficients de condensation, on établie des relations pouvant se résoudre numériquement pour (S−1), r et t. L'applciation de cette théorie montre une augmentation considérable de (S−1)mc. La solution analytique de Maxwell obtenue, la variation du facteur I sous différentes conditions atmosphériques, et l'effet des coefficients de condensation et d'accomodation thermique par le biais de l'utilisation de la théorie cinétique de croissance des gouttelettes, suggèrent que la sursaturation maximale peut atteindre et même dépasser 10% dans les nuages convectifs." @default.
- W2010583635 created "2016-06-24" @default.
- W2010583635 creator A5084419992 @default.
- W2010583635 date "1993-09-01" @default.
- W2010583635 modified "2023-10-02" @default.
- W2010583635 title "Water supersaturation in convective clouds" @default.
- W2010583635 cites W1966007207 @default.
- W2010583635 cites W1972791564 @default.
- W2010583635 cites W1986010734 @default.
- W2010583635 cites W1988228627 @default.
- W2010583635 cites W2004869803 @default.
- W2010583635 cites W2007440427 @default.
- W2010583635 cites W2046746295 @default.
- W2010583635 cites W2050859748 @default.
- W2010583635 cites W2174068112 @default.
- W2010583635 cites W2174079579 @default.
- W2010583635 cites W2177953429 @default.
- W2010583635 cites W4239219230 @default.
- W2010583635 doi "https://doi.org/10.1016/0169-8095(93)90043-n" @default.
- W2010583635 hasPublicationYear "1993" @default.
- W2010583635 type Work @default.
- W2010583635 sameAs 2010583635 @default.
- W2010583635 citedByCount "17" @default.
- W2010583635 countsByYear W20105836352012 @default.
- W2010583635 countsByYear W20105836352013 @default.
- W2010583635 countsByYear W20105836352016 @default.
- W2010583635 countsByYear W20105836352018 @default.
- W2010583635 countsByYear W20105836352021 @default.
- W2010583635 countsByYear W20105836352022 @default.
- W2010583635 countsByYear W20105836352023 @default.
- W2010583635 crossrefType "journal-article" @default.
- W2010583635 hasAuthorship W2010583635A5084419992 @default.
- W2010583635 hasConcept C10899652 @default.
- W2010583635 hasConcept C109663097 @default.
- W2010583635 hasConcept C121332964 @default.
- W2010583635 hasConcept C135889238 @default.
- W2010583635 hasConcept C178635117 @default.
- W2010583635 hasConcept C192562407 @default.
- W2010583635 hasConcept C200093464 @default.
- W2010583635 hasConcept C200447597 @default.
- W2010583635 hasConcept C37668627 @default.
- W2010583635 hasConcept C38652104 @default.
- W2010583635 hasConcept C41008148 @default.
- W2010583635 hasConcept C69357855 @default.
- W2010583635 hasConcept C74650414 @default.
- W2010583635 hasConcept C97355855 @default.
- W2010583635 hasConceptScore W2010583635C10899652 @default.
- W2010583635 hasConceptScore W2010583635C109663097 @default.
- W2010583635 hasConceptScore W2010583635C121332964 @default.
- W2010583635 hasConceptScore W2010583635C135889238 @default.
- W2010583635 hasConceptScore W2010583635C178635117 @default.
- W2010583635 hasConceptScore W2010583635C192562407 @default.
- W2010583635 hasConceptScore W2010583635C200093464 @default.
- W2010583635 hasConceptScore W2010583635C200447597 @default.
- W2010583635 hasConceptScore W2010583635C37668627 @default.
- W2010583635 hasConceptScore W2010583635C38652104 @default.
- W2010583635 hasConceptScore W2010583635C41008148 @default.
- W2010583635 hasConceptScore W2010583635C69357855 @default.
- W2010583635 hasConceptScore W2010583635C74650414 @default.
- W2010583635 hasConceptScore W2010583635C97355855 @default.
- W2010583635 hasIssue "2-3" @default.
- W2010583635 hasLocation W20105836351 @default.
- W2010583635 hasOpenAccess W2010583635 @default.
- W2010583635 hasPrimaryLocation W20105836351 @default.
- W2010583635 hasRelatedWork W1973209790 @default.
- W2010583635 hasRelatedWork W1973688119 @default.
- W2010583635 hasRelatedWork W1979351042 @default.
- W2010583635 hasRelatedWork W2009603294 @default.
- W2010583635 hasRelatedWork W2056000228 @default.
- W2010583635 hasRelatedWork W2057324140 @default.
- W2010583635 hasRelatedWork W2073956814 @default.
- W2010583635 hasRelatedWork W2092874025 @default.
- W2010583635 hasRelatedWork W2365881302 @default.
- W2010583635 hasRelatedWork W3156888708 @default.
- W2010583635 hasVolume "30" @default.
- W2010583635 isParatext "false" @default.
- W2010583635 isRetracted "false" @default.
- W2010583635 magId "2010583635" @default.
- W2010583635 workType "article" @default.