Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010601699> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2010601699 abstract "Artificial neural network paradigms are derived from biological nervous system and are characterized by massive parallelism. These networks have shown the capabilities of processing input-output mapping operations even where the transformation rules are not known, partially known, or ill-defined. For high-speed processing, we have fabricated neural network architectures as building-block chips with either a 32 X 32 matrix of synapses or a 32 X 31 array of synapses along with 32 neurons along a diagonal for a 32 X 32 matrix. Reconfigurability allows a variety of architectures from fully recurrent to fully feedforward, including constructive architectures such as cascade correlation. Further, a variety of gradient-descent learning algorithms have been implemented. Additionally, the chips being cascadable, larger size networks are easily assembled. An innovative scheme of combining two identical synapses on two respective chips in parallel nominally doubles the bit resolution from 7 bits (6-bit + sign) to 13 bits (12-bit + sign). We describe the feedforward net obtained by assembly of 8 chips on a board with nominally 13 bits of resolution for a hardware-in-the-loop learning of a feature classification problem involving map-data. This neural net hardware with 27 analog inputs and 7 outputs is able to learn to classify the features and provide the required output map at high speed with 89% accuracy. This result, with hardware's lower precision, etc., compares favorably with an accuracy of 92% obtained both by a neural network software simulation (floating point accuracy of synaptic weights) and a statistical technique of k-nearest neighbors." @default.
- W2010601699 created "2016-06-24" @default.
- W2010601699 creator A5017472580 @default.
- W2010601699 creator A5021895423 @default.
- W2010601699 creator A5046886752 @default.
- W2010601699 creator A5057408423 @default.
- W2010601699 creator A5085286540 @default.
- W2010601699 date "1995-03-28" @default.
- W2010601699 modified "2023-10-03" @default.
- W2010601699 title "<title>High-resolution synaptic weights and hardware-in-the-loop learning</title>" @default.
- W2010601699 doi "https://doi.org/10.1117/12.205250" @default.
- W2010601699 hasPublicationYear "1995" @default.
- W2010601699 type Work @default.
- W2010601699 sameAs 2010601699 @default.
- W2010601699 citedByCount "8" @default.
- W2010601699 countsByYear W20106016992012 @default.
- W2010601699 countsByYear W20106016992019 @default.
- W2010601699 crossrefType "proceedings-article" @default.
- W2010601699 hasAuthorship W2010601699A5017472580 @default.
- W2010601699 hasAuthorship W2010601699A5021895423 @default.
- W2010601699 hasAuthorship W2010601699A5046886752 @default.
- W2010601699 hasAuthorship W2010601699A5057408423 @default.
- W2010601699 hasAuthorship W2010601699A5085286540 @default.
- W2010601699 hasConcept C108583219 @default.
- W2010601699 hasConcept C11413529 @default.
- W2010601699 hasConcept C127413603 @default.
- W2010601699 hasConcept C133731056 @default.
- W2010601699 hasConcept C154945302 @default.
- W2010601699 hasConcept C2524010 @default.
- W2010601699 hasConcept C2777210771 @default.
- W2010601699 hasConcept C33923547 @default.
- W2010601699 hasConcept C38858127 @default.
- W2010601699 hasConcept C41008148 @default.
- W2010601699 hasConcept C47702885 @default.
- W2010601699 hasConcept C50644808 @default.
- W2010601699 hasConcept C9390403 @default.
- W2010601699 hasConceptScore W2010601699C108583219 @default.
- W2010601699 hasConceptScore W2010601699C11413529 @default.
- W2010601699 hasConceptScore W2010601699C127413603 @default.
- W2010601699 hasConceptScore W2010601699C133731056 @default.
- W2010601699 hasConceptScore W2010601699C154945302 @default.
- W2010601699 hasConceptScore W2010601699C2524010 @default.
- W2010601699 hasConceptScore W2010601699C2777210771 @default.
- W2010601699 hasConceptScore W2010601699C33923547 @default.
- W2010601699 hasConceptScore W2010601699C38858127 @default.
- W2010601699 hasConceptScore W2010601699C41008148 @default.
- W2010601699 hasConceptScore W2010601699C47702885 @default.
- W2010601699 hasConceptScore W2010601699C50644808 @default.
- W2010601699 hasConceptScore W2010601699C9390403 @default.
- W2010601699 hasLocation W20106016991 @default.
- W2010601699 hasOpenAccess W2010601699 @default.
- W2010601699 hasPrimaryLocation W20106016991 @default.
- W2010601699 hasRelatedWork W1604847762 @default.
- W2010601699 hasRelatedWork W1905705329 @default.
- W2010601699 hasRelatedWork W2014323024 @default.
- W2010601699 hasRelatedWork W2086999410 @default.
- W2010601699 hasRelatedWork W2258992572 @default.
- W2010601699 hasRelatedWork W2359410228 @default.
- W2010601699 hasRelatedWork W2381165384 @default.
- W2010601699 hasRelatedWork W2517090075 @default.
- W2010601699 hasRelatedWork W3170086649 @default.
- W2010601699 hasRelatedWork W3177279640 @default.
- W2010601699 isParatext "false" @default.
- W2010601699 isRetracted "false" @default.
- W2010601699 magId "2010601699" @default.
- W2010601699 workType "article" @default.