Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010644681> ?p ?o ?g. }
- W2010644681 endingPage "64" @default.
- W2010644681 startingPage "49" @default.
- W2010644681 abstract "Abstract Studying dynamic behaviours of a transportation system requires the use of the system mathematical models as well as prediction of traffic flow in the system. Therefore, traffic flow prediction plays an important role in today's intelligent transportation systems. This article introduces a new approach to short‐term daily traffic flow prediction based on artificial neural networks. Among the family of neural networks, multi‐layer perceptron (MLP), radial basis function (RBF) neural network and wavenets have been selected as the three best candidates for performing traffic flow prediction. Moreover, back‐propagation (BP) has been adapted as the most efficient learning scheme in all the cases. It is shown that the coefficients produced by temporal signals improve the performance of the BP learning (BPL) algorithm. Temporal signals provide researchers with a new model of temporal difference BP learning algorithm (TDBPL). The capability and performance of TDBPL algorithm are examined by means of simulation in order to prove that the wavelet theory, with its multi‐resolution ability in comparison to RBF neural networks, is a suitable algorithm in traffic flow forecasting. It is also concluded that despite MLP applications, RBF neural networks do not provide negative forecasts. In addition, the local minimum problems are inevitable in MLP algorithms, while RBF neural networks and wavenet networks do not encounter them." @default.
- W2010644681 created "2016-06-24" @default.
- W2010644681 creator A5022201943 @default.
- W2010644681 creator A5073252452 @default.
- W2010644681 date "2013-10-23" @default.
- W2010644681 modified "2023-10-18" @default.
- W2010644681 title "Application of temporal difference learning rules in short‐term traffic flow prediction" @default.
- W2010644681 cites W1531145297 @default.
- W2010644681 cites W1541824337 @default.
- W2010644681 cites W1586335931 @default.
- W2010644681 cites W1967681834 @default.
- W2010644681 cites W1978769731 @default.
- W2010644681 cites W1982613672 @default.
- W2010644681 cites W1988489815 @default.
- W2010644681 cites W1990611565 @default.
- W2010644681 cites W1990670850 @default.
- W2010644681 cites W1996021349 @default.
- W2010644681 cites W2005248249 @default.
- W2010644681 cites W2007422655 @default.
- W2010644681 cites W2007842028 @default.
- W2010644681 cites W2014843617 @default.
- W2010644681 cites W2020372185 @default.
- W2010644681 cites W2021153764 @default.
- W2010644681 cites W2021229894 @default.
- W2010644681 cites W2029050814 @default.
- W2010644681 cites W2030032088 @default.
- W2010644681 cites W2032717371 @default.
- W2010644681 cites W2036889885 @default.
- W2010644681 cites W2044473918 @default.
- W2010644681 cites W2051423215 @default.
- W2010644681 cites W2052429958 @default.
- W2010644681 cites W2055412520 @default.
- W2010644681 cites W2056145546 @default.
- W2010644681 cites W2056425734 @default.
- W2010644681 cites W2057918527 @default.
- W2010644681 cites W2061062671 @default.
- W2010644681 cites W2069929199 @default.
- W2010644681 cites W2079662306 @default.
- W2010644681 cites W2082533141 @default.
- W2010644681 cites W2083238230 @default.
- W2010644681 cites W2088895345 @default.
- W2010644681 cites W2089079426 @default.
- W2010644681 cites W2090192376 @default.
- W2010644681 cites W2093091824 @default.
- W2010644681 cites W2095181336 @default.
- W2010644681 cites W2102586410 @default.
- W2010644681 cites W2103626435 @default.
- W2010644681 cites W2107232390 @default.
- W2010644681 cites W2112479936 @default.
- W2010644681 cites W2117726420 @default.
- W2010644681 cites W2125817951 @default.
- W2010644681 cites W2126275173 @default.
- W2010644681 cites W2128455957 @default.
- W2010644681 cites W2129308996 @default.
- W2010644681 cites W2131767615 @default.
- W2010644681 cites W2132711183 @default.
- W2010644681 cites W2135122778 @default.
- W2010644681 cites W2137393925 @default.
- W2010644681 cites W2144623333 @default.
- W2010644681 cites W2150010190 @default.
- W2010644681 cites W2153787847 @default.
- W2010644681 cites W2156793027 @default.
- W2010644681 cites W2158091072 @default.
- W2010644681 cites W2166662814 @default.
- W2010644681 cites W2169424991 @default.
- W2010644681 cites W2171234954 @default.
- W2010644681 cites W2171506994 @default.
- W2010644681 cites W2187559424 @default.
- W2010644681 cites W2281458575 @default.
- W2010644681 cites W2293747114 @default.
- W2010644681 cites W3041202696 @default.
- W2010644681 cites W3198350258 @default.
- W2010644681 cites W4214871172 @default.
- W2010644681 cites W4248090385 @default.
- W2010644681 doi "https://doi.org/10.1111/exsy.12055" @default.
- W2010644681 hasPublicationYear "2013" @default.
- W2010644681 type Work @default.
- W2010644681 sameAs 2010644681 @default.
- W2010644681 citedByCount "15" @default.
- W2010644681 countsByYear W20106446812014 @default.
- W2010644681 countsByYear W20106446812015 @default.
- W2010644681 countsByYear W20106446812016 @default.
- W2010644681 countsByYear W20106446812018 @default.
- W2010644681 countsByYear W20106446812019 @default.
- W2010644681 countsByYear W20106446812020 @default.
- W2010644681 countsByYear W20106446812021 @default.
- W2010644681 countsByYear W20106446812023 @default.
- W2010644681 crossrefType "journal-article" @default.
- W2010644681 hasAuthorship W2010644681A5022201943 @default.
- W2010644681 hasAuthorship W2010644681A5073252452 @default.
- W2010644681 hasConcept C11413529 @default.
- W2010644681 hasConcept C119857082 @default.
- W2010644681 hasConcept C121332964 @default.
- W2010644681 hasConcept C124101348 @default.
- W2010644681 hasConcept C127413603 @default.
- W2010644681 hasConcept C147176958 @default.
- W2010644681 hasConcept C154945302 @default.
- W2010644681 hasConcept C179717631 @default.