Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010652605> ?p ?o ?g. }
- W2010652605 endingPage "69" @default.
- W2010652605 startingPage "16" @default.
- W2010652605 abstract "Many are the situations in Geology in which non-deformable and deformable inclusions are carried about in suspension by the motion of a fluid, or a rock behaving like a fluid. Therefore, it is of crucial importance to Geosciences to understand the rotational behaviour of inclusions in viscous flow, and the effects in the matrix deformation. A major step was given by Jeffery (1922), who provided approximate analytical solutions that have been extensively used to describe how rigid spheroids rotate in homogeneous flows. He considered isolated inclusions in no-slip contact with an infinite width matrix. However, in a great variety of geological processes, flow can be confined, the inclusion can deform, the inclusion/matrix interface can be slipping, or inclusions can interact with neighbours. By analytical, experimental analogue, and numerical modelling it has been shown how inclusions rotate, how the surrounding matrix flows, how pressure and velocity control rigid inclusion behaviour, and how the models can be applied to geological processes. Modelling has shown that: (1) for wide channels (ratio Wr of channel width over inclusion least axis length > 10) and non-slipping interface, results agree with Jeffery's model, while for narrow channels (Wr < 5) or slipping interface the results deviate greatly from Jeffery's model. (2) For narrow channels or slipping interface, inclusions with aspect ratio Ar (greatest over least principle axis) > 1 can rotate backwards (antithetic rotation, against flow vorticity) from an initial orientation ϕ = 0° (greatest principle axis parallel to the shear plane), in great contrast to Jeffery's model. (3) Back rotation is limited because inclusions reach a stable equilibrium orientation (ϕse) at shallow positive angles (0° ≤ ϕ < 90°). (4) There is also an unstable equilibrium orientation (ϕue), which defines an antithetic rotation field with ϕse, and both ϕse and ϕue depend on confinement and inclusion aspect ratio and shape. (5) The flow around rigid inclusions is greatly perturbed by confinement or slipping interface, and a new flow pattern (cat eyes-shaped) has been described. (6) The numerical models provide detailed and coherent information about the physical parameters involved in the process (e.g. pressure and velocity distributions within the model), which helps to explain inclusion behaviour. (7) The existing models can be used to quantify important parameters that characterise ductile shear zones." @default.
- W2010652605 created "2016-06-24" @default.
- W2010652605 creator A5012562870 @default.
- W2010652605 creator A5045355348 @default.
- W2010652605 creator A5045438613 @default.
- W2010652605 creator A5048790208 @default.
- W2010652605 creator A5075057371 @default.
- W2010652605 date "2014-07-01" @default.
- W2010652605 modified "2023-09-27" @default.
- W2010652605 title "The behaviour of deformable and non-deformable inclusions in viscous flow" @default.
- W2010652605 cites W1554942467 @default.
- W2010652605 cites W1807870242 @default.
- W2010652605 cites W1895638703 @default.
- W2010652605 cites W1964747958 @default.
- W2010652605 cites W1967033850 @default.
- W2010652605 cites W1967141113 @default.
- W2010652605 cites W1967259741 @default.
- W2010652605 cites W1967554632 @default.
- W2010652605 cites W1968129502 @default.
- W2010652605 cites W1968302702 @default.
- W2010652605 cites W1968324382 @default.
- W2010652605 cites W1968922555 @default.
- W2010652605 cites W1970474865 @default.
- W2010652605 cites W1970655155 @default.
- W2010652605 cites W1970772059 @default.
- W2010652605 cites W1971010557 @default.
- W2010652605 cites W1972473517 @default.
- W2010652605 cites W1972565520 @default.
- W2010652605 cites W1975843207 @default.
- W2010652605 cites W1975849721 @default.
- W2010652605 cites W1976626530 @default.
- W2010652605 cites W1977362337 @default.
- W2010652605 cites W1977366031 @default.
- W2010652605 cites W1978888796 @default.
- W2010652605 cites W1979519193 @default.
- W2010652605 cites W1979543060 @default.
- W2010652605 cites W1979881854 @default.
- W2010652605 cites W1980042678 @default.
- W2010652605 cites W1980134303 @default.
- W2010652605 cites W1980549335 @default.
- W2010652605 cites W1980896165 @default.
- W2010652605 cites W1981957120 @default.
- W2010652605 cites W1982249626 @default.
- W2010652605 cites W1982833334 @default.
- W2010652605 cites W1983993498 @default.
- W2010652605 cites W1984741843 @default.
- W2010652605 cites W1985038998 @default.
- W2010652605 cites W1985668245 @default.
- W2010652605 cites W1985788974 @default.
- W2010652605 cites W1986079379 @default.
- W2010652605 cites W1986644826 @default.
- W2010652605 cites W1987146854 @default.
- W2010652605 cites W1987317522 @default.
- W2010652605 cites W1987476990 @default.
- W2010652605 cites W1987629923 @default.
- W2010652605 cites W1987818415 @default.
- W2010652605 cites W1988106410 @default.
- W2010652605 cites W1988146465 @default.
- W2010652605 cites W1989533499 @default.
- W2010652605 cites W1990198764 @default.
- W2010652605 cites W1990871919 @default.
- W2010652605 cites W1991133794 @default.
- W2010652605 cites W1991795741 @default.
- W2010652605 cites W1992271652 @default.
- W2010652605 cites W1993740081 @default.
- W2010652605 cites W1996522799 @default.
- W2010652605 cites W1996977527 @default.
- W2010652605 cites W1999665172 @default.
- W2010652605 cites W1999686550 @default.
- W2010652605 cites W2000076166 @default.
- W2010652605 cites W2001073006 @default.
- W2010652605 cites W2002124032 @default.
- W2010652605 cites W2002874489 @default.
- W2010652605 cites W2004083499 @default.
- W2010652605 cites W2005047759 @default.
- W2010652605 cites W2005938469 @default.
- W2010652605 cites W2006627386 @default.
- W2010652605 cites W2006884492 @default.
- W2010652605 cites W2006897394 @default.
- W2010652605 cites W2008686749 @default.
- W2010652605 cites W2009920277 @default.
- W2010652605 cites W2012554989 @default.
- W2010652605 cites W2013104749 @default.
- W2010652605 cites W2013672042 @default.
- W2010652605 cites W2014817002 @default.
- W2010652605 cites W2015035949 @default.
- W2010652605 cites W2015717093 @default.
- W2010652605 cites W2016864250 @default.
- W2010652605 cites W2017248036 @default.
- W2010652605 cites W2018819592 @default.
- W2010652605 cites W2019141427 @default.
- W2010652605 cites W2023202016 @default.
- W2010652605 cites W2027553889 @default.
- W2010652605 cites W2028645817 @default.
- W2010652605 cites W2029722846 @default.
- W2010652605 cites W2030744344 @default.
- W2010652605 cites W2031293425 @default.
- W2010652605 cites W2032325704 @default.