Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010680143> ?p ?o ?g. }
- W2010680143 endingPage "116" @default.
- W2010680143 startingPage "99" @default.
- W2010680143 abstract "Time series forecasting is important because it can often provide the foundation for decision making in a large variety of fields. Statistical approaches have been extensively adopted for time series forecasting in the past decades. Recently, machine learning techniques have drawn attention and useful forecasting systems based on these techniques have been developed. In this paper, we propose a weighted Least Squares Support Vector Machine (LS-SVM) based approach for time series forecasting. Given a forecasting sequence, a suitable set of training patterns are extracted from the historical data by employing the concepts of k-nearest neighbors and mutual information. Based on the training patterns, a modified LS-SVM is developed to derive a forecasting model which can then be used for forecasting. Our proposed approach has several advantages. It can produce adaptive forecasting models. It works for univariate and multivariate cases. It also works for one-step as well as multi-step forecasting. A number of experiments are conducted to demonstrate the effectiveness of the proposed approach for time series forecasting." @default.
- W2010680143 created "2016-06-24" @default.
- W2010680143 creator A5024403730 @default.
- W2010680143 creator A5031533660 @default.
- W2010680143 date "2015-04-01" @default.
- W2010680143 modified "2023-10-14" @default.
- W2010680143 title "A weighted LS-SVM based learning system for time series forecasting" @default.
- W2010680143 cites W1574463154 @default.
- W2010680143 cites W1963502807 @default.
- W2010680143 cites W1968673142 @default.
- W2010680143 cites W1969765329 @default.
- W2010680143 cites W1978996791 @default.
- W2010680143 cites W1980418485 @default.
- W2010680143 cites W1985975517 @default.
- W2010680143 cites W1996730695 @default.
- W2010680143 cites W1998203213 @default.
- W2010680143 cites W2012787632 @default.
- W2010680143 cites W2016238911 @default.
- W2010680143 cites W2019207321 @default.
- W2010680143 cites W2019821804 @default.
- W2010680143 cites W2024858674 @default.
- W2010680143 cites W2025210087 @default.
- W2010680143 cites W2025426031 @default.
- W2010680143 cites W2028072219 @default.
- W2010680143 cites W2030790799 @default.
- W2010680143 cites W2036870214 @default.
- W2010680143 cites W2043905695 @default.
- W2010680143 cites W2049636482 @default.
- W2010680143 cites W2056558004 @default.
- W2010680143 cites W2057529458 @default.
- W2010680143 cites W2059852492 @default.
- W2010680143 cites W2069454342 @default.
- W2010680143 cites W2069787118 @default.
- W2010680143 cites W2077984277 @default.
- W2010680143 cites W2085463545 @default.
- W2010680143 cites W2092939357 @default.
- W2010680143 cites W2098725265 @default.
- W2010680143 cites W2111307099 @default.
- W2010680143 cites W2117014758 @default.
- W2010680143 cites W2117074724 @default.
- W2010680143 cites W2117829824 @default.
- W2010680143 cites W2121565257 @default.
- W2010680143 cites W2123513648 @default.
- W2010680143 cites W2125205396 @default.
- W2010680143 cites W2127817155 @default.
- W2010680143 cites W2131453387 @default.
- W2010680143 cites W2131534673 @default.
- W2010680143 cites W2156654695 @default.
- W2010680143 cites W2168138569 @default.
- W2010680143 cites W2168577773 @default.
- W2010680143 cites W2172064003 @default.
- W2010680143 cites W4241443503 @default.
- W2010680143 cites W4244238212 @default.
- W2010680143 doi "https://doi.org/10.1016/j.ins.2014.12.031" @default.
- W2010680143 hasPublicationYear "2015" @default.
- W2010680143 type Work @default.
- W2010680143 sameAs 2010680143 @default.
- W2010680143 citedByCount "82" @default.
- W2010680143 countsByYear W20106801432015 @default.
- W2010680143 countsByYear W20106801432016 @default.
- W2010680143 countsByYear W20106801432017 @default.
- W2010680143 countsByYear W20106801432018 @default.
- W2010680143 countsByYear W20106801432019 @default.
- W2010680143 countsByYear W20106801432020 @default.
- W2010680143 countsByYear W20106801432021 @default.
- W2010680143 countsByYear W20106801432022 @default.
- W2010680143 countsByYear W20106801432023 @default.
- W2010680143 crossrefType "journal-article" @default.
- W2010680143 hasAuthorship W2010680143A5024403730 @default.
- W2010680143 hasAuthorship W2010680143A5031533660 @default.
- W2010680143 hasConcept C119857082 @default.
- W2010680143 hasConcept C122282355 @default.
- W2010680143 hasConcept C12267149 @default.
- W2010680143 hasConcept C124101348 @default.
- W2010680143 hasConcept C143724316 @default.
- W2010680143 hasConcept C151406439 @default.
- W2010680143 hasConcept C151730666 @default.
- W2010680143 hasConcept C154945302 @default.
- W2010680143 hasConcept C161584116 @default.
- W2010680143 hasConcept C177264268 @default.
- W2010680143 hasConcept C199163554 @default.
- W2010680143 hasConcept C199360897 @default.
- W2010680143 hasConcept C41008148 @default.
- W2010680143 hasConcept C49937458 @default.
- W2010680143 hasConcept C86803240 @default.
- W2010680143 hasConceptScore W2010680143C119857082 @default.
- W2010680143 hasConceptScore W2010680143C122282355 @default.
- W2010680143 hasConceptScore W2010680143C12267149 @default.
- W2010680143 hasConceptScore W2010680143C124101348 @default.
- W2010680143 hasConceptScore W2010680143C143724316 @default.
- W2010680143 hasConceptScore W2010680143C151406439 @default.
- W2010680143 hasConceptScore W2010680143C151730666 @default.
- W2010680143 hasConceptScore W2010680143C154945302 @default.
- W2010680143 hasConceptScore W2010680143C161584116 @default.
- W2010680143 hasConceptScore W2010680143C177264268 @default.
- W2010680143 hasConceptScore W2010680143C199163554 @default.
- W2010680143 hasConceptScore W2010680143C199360897 @default.
- W2010680143 hasConceptScore W2010680143C41008148 @default.