Matches in SemOpenAlex for { <https://semopenalex.org/work/W2010952011> ?p ?o ?g. }
- W2010952011 endingPage "74" @default.
- W2010952011 startingPage "65" @default.
- W2010952011 abstract "Computer vision techniques are a means to extract individual animal information such as weight, activity and calving time in intensive farming. Automatic detection requires adequate image pre-processing such as segmentation to precisely distinguish the animal from its background. For some analyses such as gait analysis, a side view perspective is recommended. When using a side view angle however, the background is more difficult to control – moving objects, such as other animals may negatively impact successful image segmentation. The objective of this research was to evaluate five different background segmentation algorithms on side view images when taken against a static background (a solid transportable wall) and a dynamic background (open air, without a wall). The experiments were conducted on a commercial robotic-milking dairy farm in Israel with a herd size of 70 Israeli Holstein cows. A side view image of cow’s gait was recorded after milking when the cows exited the milking area and returned to the cowshed. From the recording database, a random selection was made of 35 frames containing a static background (solid wall) and 20 frames containing a dynamic background (natural barn environment with other cows). Five segmentation algorithms were chosen and adapted from literature to extract the cow shape from the image. The output of three algorithms gave the cow’s full body shape two identified only the contour of the cow’s body. The algorithms were compared on their ability to correctly identify the cow’s back contour line. The performance of each algorithm was quantified by comparing its outputs to a golden standard of manually labelled cow pixels in the image. The introduction of a physical wall behind the cows (static background) significantly improved the foreground segmentation results (Mean Absolute Error (MAE) = 6.7 ± 5.7 pixels vs. 19.7 ± 9.1 pixels). The fourth algorithm, based on an edge detection on the background difference frame, gave the best cow back contour line segmentation results (b0 = −0.4 ± 15.5 and b1 = 1.00 ± 0.07). The fifth algorithm which is based on consecutive frame differences was less accurate than the other four methods which are based on the background frame differences (MAE = 16.0 ± 5.9 pixels vs. 4.1 ± 2.2 pixels, 4.3 ± 2.2 pixels, 5.6 ± 2.8 pixels and 3.7 ± 1.4 pixels respectively for the other four algorithms). The results show that the applied algorithms were not robust enough to work on side view images with dynamic backgrounds." @default.
- W2010952011 created "2016-06-24" @default.
- W2010952011 creator A5004695658 @default.
- W2010952011 creator A5015701162 @default.
- W2010952011 creator A5017515434 @default.
- W2010952011 creator A5020824924 @default.
- W2010952011 creator A5029503795 @default.
- W2010952011 creator A5040765048 @default.
- W2010952011 creator A5047209547 @default.
- W2010952011 creator A5047267972 @default.
- W2010952011 creator A5057222773 @default.
- W2010952011 creator A5058860895 @default.
- W2010952011 creator A5068871537 @default.
- W2010952011 creator A5081524916 @default.
- W2010952011 date "2013-02-01" @default.
- W2010952011 modified "2023-10-16" @default.
- W2010952011 title "Comparison of segmentation algorithms for cow contour extraction from natural barn background in side view images" @default.
- W2010952011 cites W1971707128 @default.
- W2010952011 cites W1974707448 @default.
- W2010952011 cites W1975039870 @default.
- W2010952011 cites W1995208780 @default.
- W2010952011 cites W1995444699 @default.
- W2010952011 cites W2026379956 @default.
- W2010952011 cites W2027264691 @default.
- W2010952011 cites W2028298835 @default.
- W2010952011 cites W2028411288 @default.
- W2010952011 cites W2031777275 @default.
- W2010952011 cites W2041282815 @default.
- W2010952011 cites W2048362028 @default.
- W2010952011 cites W2065005967 @default.
- W2010952011 cites W2083917338 @default.
- W2010952011 cites W2086291715 @default.
- W2010952011 cites W2102241878 @default.
- W2010952011 cites W2104209559 @default.
- W2010952011 cites W2117263553 @default.
- W2010952011 cites W2138119095 @default.
- W2010952011 doi "https://doi.org/10.1016/j.compag.2012.12.003" @default.
- W2010952011 hasPublicationYear "2013" @default.
- W2010952011 type Work @default.
- W2010952011 sameAs 2010952011 @default.
- W2010952011 citedByCount "28" @default.
- W2010952011 countsByYear W20109520112013 @default.
- W2010952011 countsByYear W20109520112014 @default.
- W2010952011 countsByYear W20109520112015 @default.
- W2010952011 countsByYear W20109520112016 @default.
- W2010952011 countsByYear W20109520112017 @default.
- W2010952011 countsByYear W20109520112018 @default.
- W2010952011 countsByYear W20109520112019 @default.
- W2010952011 countsByYear W20109520112020 @default.
- W2010952011 countsByYear W20109520112021 @default.
- W2010952011 countsByYear W20109520112023 @default.
- W2010952011 crossrefType "journal-article" @default.
- W2010952011 hasAuthorship W2010952011A5004695658 @default.
- W2010952011 hasAuthorship W2010952011A5015701162 @default.
- W2010952011 hasAuthorship W2010952011A5017515434 @default.
- W2010952011 hasAuthorship W2010952011A5020824924 @default.
- W2010952011 hasAuthorship W2010952011A5029503795 @default.
- W2010952011 hasAuthorship W2010952011A5040765048 @default.
- W2010952011 hasAuthorship W2010952011A5047209547 @default.
- W2010952011 hasAuthorship W2010952011A5047267972 @default.
- W2010952011 hasAuthorship W2010952011A5057222773 @default.
- W2010952011 hasAuthorship W2010952011A5058860895 @default.
- W2010952011 hasAuthorship W2010952011A5068871537 @default.
- W2010952011 hasAuthorship W2010952011A5081524916 @default.
- W2010952011 hasConcept C11413529 @default.
- W2010952011 hasConcept C124504099 @default.
- W2010952011 hasConcept C140793950 @default.
- W2010952011 hasConcept C154945302 @default.
- W2010952011 hasConcept C2779885849 @default.
- W2010952011 hasConcept C31972630 @default.
- W2010952011 hasConcept C33923547 @default.
- W2010952011 hasConcept C41008148 @default.
- W2010952011 hasConcept C86803240 @default.
- W2010952011 hasConcept C89600930 @default.
- W2010952011 hasConceptScore W2010952011C11413529 @default.
- W2010952011 hasConceptScore W2010952011C124504099 @default.
- W2010952011 hasConceptScore W2010952011C140793950 @default.
- W2010952011 hasConceptScore W2010952011C154945302 @default.
- W2010952011 hasConceptScore W2010952011C2779885849 @default.
- W2010952011 hasConceptScore W2010952011C31972630 @default.
- W2010952011 hasConceptScore W2010952011C33923547 @default.
- W2010952011 hasConceptScore W2010952011C41008148 @default.
- W2010952011 hasConceptScore W2010952011C86803240 @default.
- W2010952011 hasConceptScore W2010952011C89600930 @default.
- W2010952011 hasLocation W20109520111 @default.
- W2010952011 hasOpenAccess W2010952011 @default.
- W2010952011 hasPrimaryLocation W20109520111 @default.
- W2010952011 hasRelatedWork W1522196789 @default.
- W2010952011 hasRelatedWork W1989313650 @default.
- W2010952011 hasRelatedWork W2105192925 @default.
- W2010952011 hasRelatedWork W2158012584 @default.
- W2010952011 hasRelatedWork W2220843992 @default.
- W2010952011 hasRelatedWork W2380891517 @default.
- W2010952011 hasRelatedWork W3215395455 @default.
- W2010952011 hasRelatedWork W4220996328 @default.
- W2010952011 hasRelatedWork W947544173 @default.
- W2010952011 hasRelatedWork W2247450546 @default.
- W2010952011 hasVolume "91" @default.