Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011051720> ?p ?o ?g. }
- W2011051720 endingPage "1216" @default.
- W2011051720 startingPage "1193" @default.
- W2011051720 abstract "The application of specific learning schemes in memetic algorithms (MAs) can have significant impact on their performances. One main issue revolves around two different learning schemes, specifically, Lamarckian and Baldwinian. It has been shown that the two learning schemes are better suited for different types of problems and some previous studies have attempted to combine both learning schemes as a means to develop a single optimisation framework capable of solving more classes of problems. However, most of the past approaches are often implemented heuristically and have not investigated the effect of different learning scheme on noisy design optimisation. In this article, we introduce a simple probabilistic approach to address this issue. In particular, we investigate a centroid-based approach that combines the two learning schemes within an MA framework (centroid-based MS; CBMA) through the effective allocation of resources (in terms of local search cost) that are based on information obtained during the optimisation process itself. A scheme that applies the right learning scheme (Lamarckian or Baldwinian) at the right time (during search) would lead to higher search performance. We conducted an empirical study to test this hypothesis using two different types of benchmark problems. The first problem set consists of simple benchmark problems whereby the problem landscape is static and gradient information can be obtained accurately. These problems are known to favour Lamarckian learning while Baldwinian learning is known to exhibit slower convergence. The second problem set consists of noisy versions of the first problem set whereby the problem landscape is dynamic as a result of the random noise perturbation injected into the design vector. These problems are known to favour learning processes that re-sample search points such as Baldwinian learning. Our experiments show that CBMA manages to adaptively allocate resources productively according to problem in most of the cases." @default.
- W2011051720 created "2016-06-24" @default.
- W2011051720 creator A5032742366 @default.
- W2011051720 creator A5036298007 @default.
- W2011051720 creator A5088761681 @default.
- W2011051720 date "2012-07-01" @default.
- W2011051720 modified "2023-10-16" @default.
- W2011051720 title "Centroid-based memetic algorithm – adaptive Lamarckian and Baldwinian learning" @default.
- W2011051720 cites W1504962226 @default.
- W2011051720 cites W1519786096 @default.
- W2011051720 cites W1668207500 @default.
- W2011051720 cites W1936224457 @default.
- W2011051720 cites W1965119149 @default.
- W2011051720 cites W1980585162 @default.
- W2011051720 cites W1981097146 @default.
- W2011051720 cites W1986477256 @default.
- W2011051720 cites W1987878161 @default.
- W2011051720 cites W2012451526 @default.
- W2011051720 cites W2012771980 @default.
- W2011051720 cites W2031569136 @default.
- W2011051720 cites W2041501692 @default.
- W2011051720 cites W2057752717 @default.
- W2011051720 cites W2073469920 @default.
- W2011051720 cites W2083532959 @default.
- W2011051720 cites W2089277894 @default.
- W2011051720 cites W2097437812 @default.
- W2011051720 cites W2098888914 @default.
- W2011051720 cites W2103346049 @default.
- W2011051720 cites W2111178549 @default.
- W2011051720 cites W2115343860 @default.
- W2011051720 cites W2121084857 @default.
- W2011051720 cites W2127616736 @default.
- W2011051720 cites W2131480237 @default.
- W2011051720 cites W2142577776 @default.
- W2011051720 cites W2154047522 @default.
- W2011051720 cites W2155215599 @default.
- W2011051720 cites W2156106639 @default.
- W2011051720 cites W2162367386 @default.
- W2011051720 cites W2164989062 @default.
- W2011051720 cites W2165885026 @default.
- W2011051720 cites W66010334 @default.
- W2011051720 doi "https://doi.org/10.1080/00207721.2011.617526" @default.
- W2011051720 hasPublicationYear "2012" @default.
- W2011051720 type Work @default.
- W2011051720 sameAs 2011051720 @default.
- W2011051720 citedByCount "9" @default.
- W2011051720 countsByYear W20110517202014 @default.
- W2011051720 countsByYear W20110517202015 @default.
- W2011051720 countsByYear W20110517202018 @default.
- W2011051720 countsByYear W20110517202019 @default.
- W2011051720 countsByYear W20110517202020 @default.
- W2011051720 countsByYear W20110517202022 @default.
- W2011051720 crossrefType "journal-article" @default.
- W2011051720 hasAuthorship W2011051720A5032742366 @default.
- W2011051720 hasAuthorship W2011051720A5036298007 @default.
- W2011051720 hasAuthorship W2011051720A5088761681 @default.
- W2011051720 hasConcept C111919701 @default.
- W2011051720 hasConcept C11413529 @default.
- W2011051720 hasConcept C119857082 @default.
- W2011051720 hasConcept C126255220 @default.
- W2011051720 hasConcept C13280743 @default.
- W2011051720 hasConcept C134306372 @default.
- W2011051720 hasConcept C135320971 @default.
- W2011051720 hasConcept C146599234 @default.
- W2011051720 hasConcept C154945302 @default.
- W2011051720 hasConcept C162324750 @default.
- W2011051720 hasConcept C177264268 @default.
- W2011051720 hasConcept C185798385 @default.
- W2011051720 hasConcept C199360897 @default.
- W2011051720 hasConcept C205649164 @default.
- W2011051720 hasConcept C2777303404 @default.
- W2011051720 hasConcept C33923547 @default.
- W2011051720 hasConcept C35129592 @default.
- W2011051720 hasConcept C41008148 @default.
- W2011051720 hasConcept C49937458 @default.
- W2011051720 hasConcept C50522688 @default.
- W2011051720 hasConcept C77618280 @default.
- W2011051720 hasConcept C98045186 @default.
- W2011051720 hasConceptScore W2011051720C111919701 @default.
- W2011051720 hasConceptScore W2011051720C11413529 @default.
- W2011051720 hasConceptScore W2011051720C119857082 @default.
- W2011051720 hasConceptScore W2011051720C126255220 @default.
- W2011051720 hasConceptScore W2011051720C13280743 @default.
- W2011051720 hasConceptScore W2011051720C134306372 @default.
- W2011051720 hasConceptScore W2011051720C135320971 @default.
- W2011051720 hasConceptScore W2011051720C146599234 @default.
- W2011051720 hasConceptScore W2011051720C154945302 @default.
- W2011051720 hasConceptScore W2011051720C162324750 @default.
- W2011051720 hasConceptScore W2011051720C177264268 @default.
- W2011051720 hasConceptScore W2011051720C185798385 @default.
- W2011051720 hasConceptScore W2011051720C199360897 @default.
- W2011051720 hasConceptScore W2011051720C205649164 @default.
- W2011051720 hasConceptScore W2011051720C2777303404 @default.
- W2011051720 hasConceptScore W2011051720C33923547 @default.
- W2011051720 hasConceptScore W2011051720C35129592 @default.
- W2011051720 hasConceptScore W2011051720C41008148 @default.
- W2011051720 hasConceptScore W2011051720C49937458 @default.
- W2011051720 hasConceptScore W2011051720C50522688 @default.