Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011052296> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2011052296 endingPage "1369" @default.
- W2011052296 startingPage "1351" @default.
- W2011052296 abstract "We give a new, concise definition of the Conway group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=dot normal upper O> <mml:semantics> <mml:mrow> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>O</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>cdot mathrm {O}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as follows. The Mathieu group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper M 24> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>M</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>24</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>mathrm {M}_{24}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts quintuply transitively on 24 letters and so acts transitively (but imprimitively) on the set of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartBinomialOrMatrix 24 Choose 4 EndBinomialOrMatrix> <mml:semantics> <mml:mrow> <mml:mo>(</mml:mo> <mml:mfrac linethickness=0> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>24</mml:mn> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>4</mml:mn> </mml:mrow> </mml:mfrac> <mml:mo>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>left ({24}atop {4} right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> tetrads. We use this action to define a progenitor <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper P> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=application/x-tex>P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of shape <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=2 Superscript star StartBinomialOrMatrix 24 Choose 4 EndBinomialOrMatrix Baseline colon normal upper M 24> <mml:semantics> <mml:mrow> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>⋆<!-- ⋆ --></mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mfrac linethickness=0> <mml:mn>24</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:msup> <mml:mo>:</mml:mo> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>M</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>24</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>2^{star left ( 24 atop 4 right )}:mathrm {M}_{24}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; that is, a free product of cyclic groups of order 2 extended by a group of permutations of the involutory generators. A simple lemma leads us directly to an easily described, short relator, and factoring <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper P> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=application/x-tex>P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by this relator results in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=dot normal upper O> <mml:semantics> <mml:mrow> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>O</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>cdot mathrm {O}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Consideration of the lowest dimension in which <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=dot normal upper O> <mml:semantics> <mml:mrow> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>O</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>cdot mathrm {O}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can act faithfully produces Conway’s elements <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=xi Subscript upper T> <mml:semantics> <mml:msub> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mi>T</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>xi _T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the 24–dimensional real, orthogonal representation. The Leech lattice is obtained as the set of images under <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=dot normal upper O> <mml:semantics> <mml:mrow> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>O</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>cdot mathrm {O}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the integral vectors in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R 24> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>24</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>{mathbb R}_{24}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2011052296 created "2016-06-24" @default.
- W2011052296 creator A5021767977 @default.
- W2011052296 creator A5066328458 @default.
- W2011052296 date "2009-10-20" @default.
- W2011052296 modified "2023-09-27" @default.
- W2011052296 title "The Leech lattice Λ and the Conway group ⋅𝑂 revisited" @default.
- W2011052296 cites W1900852417 @default.
- W2011052296 cites W1968503885 @default.
- W2011052296 cites W1991663844 @default.
- W2011052296 cites W2033261109 @default.
- W2011052296 cites W2049461188 @default.
- W2011052296 cites W2060285011 @default.
- W2011052296 cites W2124166355 @default.
- W2011052296 cites W2126470725 @default.
- W2011052296 cites W2127791847 @default.
- W2011052296 cites W2318363093 @default.
- W2011052296 cites W4293259454 @default.
- W2011052296 doi "https://doi.org/10.1090/s0002-9947-09-04726-6" @default.
- W2011052296 hasPublicationYear "2009" @default.
- W2011052296 type Work @default.
- W2011052296 sameAs 2011052296 @default.
- W2011052296 citedByCount "2" @default.
- W2011052296 countsByYear W20110522962016 @default.
- W2011052296 crossrefType "journal-article" @default.
- W2011052296 hasAuthorship W2011052296A5021767977 @default.
- W2011052296 hasAuthorship W2011052296A5066328458 @default.
- W2011052296 hasBestOaLocation W20110522961 @default.
- W2011052296 hasConcept C11413529 @default.
- W2011052296 hasConcept C154945302 @default.
- W2011052296 hasConcept C2776321320 @default.
- W2011052296 hasConcept C41008148 @default.
- W2011052296 hasConceptScore W2011052296C11413529 @default.
- W2011052296 hasConceptScore W2011052296C154945302 @default.
- W2011052296 hasConceptScore W2011052296C2776321320 @default.
- W2011052296 hasConceptScore W2011052296C41008148 @default.
- W2011052296 hasIssue "3" @default.
- W2011052296 hasLocation W20110522961 @default.
- W2011052296 hasOpenAccess W2011052296 @default.
- W2011052296 hasPrimaryLocation W20110522961 @default.
- W2011052296 hasRelatedWork W151193258 @default.
- W2011052296 hasRelatedWork W1529400504 @default.
- W2011052296 hasRelatedWork W1871911958 @default.
- W2011052296 hasRelatedWork W1892467659 @default.
- W2011052296 hasRelatedWork W2348710178 @default.
- W2011052296 hasRelatedWork W2808586768 @default.
- W2011052296 hasRelatedWork W2998403542 @default.
- W2011052296 hasRelatedWork W3201926073 @default.
- W2011052296 hasRelatedWork W38394648 @default.
- W2011052296 hasRelatedWork W73525116 @default.
- W2011052296 hasVolume "362" @default.
- W2011052296 isParatext "false" @default.
- W2011052296 isRetracted "false" @default.
- W2011052296 magId "2011052296" @default.
- W2011052296 workType "article" @default.